Unpredictability

Incompressibility

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Finite Automata and Randomness

Ludwig Staiger Martin-Luther-Universität Halle-Wittenberg

Jewels of Automata: from Mathematics to Applications Leipzig, May, 2015

Automata and Measure

Unpredictability

Incompressibility

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

Notation and Preliminaries

Notation Algorithmic Randomness

2 Automata and Measure

Automata on ω -words Subword complexity

Gambling Strategies for Automata Finite-state dimension Other concepts

Incompressibility

Sequential compression Finite-state complexity

Automata and Measure

Unpredictability

Incompressibility

Notation: Strings and Languages

Finite Alphabet $X = \{0, ..., r - 1\}$, cardinality |X| = r

Finite strings (words) $w = x_1 \cdots x_n \in \{0, 1\}^*, x_i \in \{0, 1\}$

- Length |w| = n
- Languages $W \subseteq X^*$

Infinite strings (ω -words) $\xi = x_1 \cdots x_n \cdots \in X^{\omega}$

Prefixes of infinite strings $\xi[0..n] \in X^*$, $|\xi[0..n]| = n$

 ω -Languages $F \subseteq X^{\omega}$

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─注 − のへ⊙

Automata and Measure

Unpredictability 00000000000000 Incompressibility

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

X^{ω} as CANTOR space

Metric: $\rho(\eta, \xi) := \inf \{r^{-|w|} : w \in \operatorname{pref}(\eta) \cap \operatorname{pref}(\xi)\}$ Balls: $w \cdot X^{\omega} = \{\eta : w \in \operatorname{pref}(\eta)\} = \{\eta : w \sqsubset \eta\}$ Diameter: diam $w \cdot X^{\omega} = r^{-|w|}$ diam $F = \inf \{r^{-|w|} : F \subseteq w \cdot X^{\omega}\}$ Open sets: $W \cdot X^{\omega} = \bigcup_{w \in W} w \cdot X^{\omega}$ Closure: (Smallest closed set containing F) $\mathscr{C}(F) = \{\xi : \operatorname{pref}(\xi) \subseteq \operatorname{pref}(F)\}$

Fact

 $F \subseteq X^{\omega}$ is closed if and only if $\operatorname{pref}(\xi) \subseteq \operatorname{pref}(F)$ implies $\xi \in F$.

Automata and Measure

Unpredictability

Incompressibility

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Algorithmic Randomness

measure-theoretic paradigm

An ω -word is random if and only if it is not contained in a constructive null-set.

unpredictability paradigm

An ω -word is random if and only if no constructive predicting strategy can win against it.

incompressibility (complexity-theoretic) paradigm

An ω -word is random if and only if one cannot constructively compress infinitely many of its prefixes.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Measure

Measure on base sets: $\mu(w \cdot X^{\omega}) := r^{-|w|}$

Constructive null-sets: Unions of ω -languages of the form $\bigcap_{n \in \mathbb{N}} V_n \cdot X^{\omega}$,

where $V \subseteq \{(v, n) : v \in X^* \land n \in \mathbb{N}\}$ is constructive, $V_n := \{v : (v, n) \in V\}$ and $\mu(V_n \cdot X^{\omega}) \leq r^{-n}$.

Definition (Randomness)

 $\xi \in X^{\omega}$ is *random* if and only if no constructive null-set contains ξ .

Unpredictability

Incompressibility

Predicting strategy: Gambling

Our model:

- Playing against an ω -word $\xi \in X^{\omega}$.
- Gambling strategy $\Gamma : X^* \times X \to [0, 1]$ (bet on outcome $x \in X$) $\sum_{x \in X} \Gamma(w, x) \le 1$ for $w \in X^*$
- yields a (super-)martingale $\mathcal{V}_{\Gamma}: X^* \to \mathbb{R}_+$
- $\mathcal{V}_{\Gamma}(\xi[0..n])$ is the capital after the *n* th round, that is,

 $\mathcal{V}_{\Gamma}(\xi[0..n]) = r \cdot \Gamma(\xi[0..n], x) \cdot \mathcal{V}_{\Gamma}(\xi[0..n-1]), \text{ for } \xi(n) = x$

Fact (super-martingale property)

$$\mathcal{V}_{\Gamma}(w) \geq \frac{1}{r} \cdot \sum_{x \in X} \mathcal{V}_{\Gamma}(wx)$$

Definition (Randomness)

 $\xi \in X^{\omega}$ is *random* if and only if no constructive gambling strategy Γ can win against ξ , that is, $\limsup_{n \to \infty} \mathcal{V}_{\Gamma}(\xi[0..n]) < \infty$.

Automata and Measure

Unpredictability

Incompressibility

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Gambling strategies: martingale \mathcal{V}

Automata and Measure

Unpredictability

Incompressibility

Compression: The Principle of Lossless Compression

space of texts

space of descriptions

f is injective and $\varphi(f(w)) = w$ for all $w \in X^*$

Complexity of *w* w.r.t. φ : $C_{\varphi}(w) := \inf\{|\pi| : \varphi(\pi) = w\}$

Definition (Randomness = Incompressibility)

 $\xi \in X^{\omega}$ is random if and only if all constructive decompression functions φ satisfy $\exists c \forall n(C_{\varphi}(\xi[0..n])) \ge n-c$, that is, prefixes of ξ cannot be compressed.

Unpredictability

Incompressibility

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

References: Algorithmic Randomness

- Calude, C.S.: Information and Randomness. An Algorithmic Perspective, 2nd ed., Springer, Berlin (2002).
- Downey, R., Hirschfeldt D.: *Algorithmic Randomness and Complexity*, Springer, Heidelberg (2010).
- Li M., Vitányi: An Introduction to Kolmogorov Complexity and Its Applications, Springer, Berlin (1993).
- Nies, A.: *Computability and Randomness*, Oxford Univ. Press, Oxford (2009).

A

A

Automata and Measure

Unpredictability

Incompressibility

Automata on ω -words: Büchi-automata

Automaton:
$$\mathscr{A} = (X, Q, \Delta, q_0, Q_{\text{fin}})$$
 with
 $\Delta \subseteq Q \times X \times Q, \ q_0 \in Q, \ Q_{\text{fin}} \subseteq Q$
Run on ξ : $(q_i)_{i \in \mathbb{N}}$ with $\forall i \ge 0 : (q_i, \xi(i+1), q_{i+1}) \in \Delta$

$$q_{0} \qquad q_{1} \qquad q_{2} \qquad q_{i-1} \qquad q_{i}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \uparrow \qquad \cdots$$

$$\xi(1) \qquad \xi(2) \qquad \xi(i-1) \qquad \xi(i)$$
accepts ξ : $\exists (q_{i})_{i \in \mathbb{N}} \quad \forall i \ge 0 : (q_{i}, \xi(i+1), q_{i+1}) \in \Delta \quad \land$

$$\exists^{\infty}k : q_{k} \in Q_{\text{fin}}$$
accepts F : $F = \{\xi : \mathscr{A} \text{ accepts } \xi\}$

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Regular ω -languages

Definition (Regular ω -language)

An ω -language $F \subseteq X^{\omega}$ is called *regular* if and only if F is accepted by a finite automaton

Theorem (BÜCHI 1962)

- An ω -language $F \subseteq X^{\omega}$ is regular if and only if $F = \bigcup_{i=1}^{n} W_i \cdot V_i^{\omega}$ for some $n \in \mathbb{N}$ and regular languages $W_i, V_i \subseteq X^*$.
- 2 The set of regular ω-languages over X is closed under Boolean operations.

Unpredictability

Incompressibility

Regular null-sets

Theorem (*St'76,St'98*)

Let F be a regular ω -language.

• If F is closed then $\mu(F) = 0$ if and only if there is word $w \in X^*$ such that

$$F \subseteq X^{\omega} \setminus X^* \cdot w \cdot X^{\omega}.$$

$$\mu(F) = 0 \text{ if and only if} F \subseteq \bigcup_{w \in X^*} X^{\omega} \setminus X^* \cdot w \cdot X^{\omega}.$$

Remark

This theorem holds for a much larger class of finite measures on X^{ω} .

Definition (Randomness = Disjunctivity)

An ω -word $\xi \in X^{\omega}$ is called *disjunctive* (or *rich* or *saturated*) if and only if it contains every word $w \in X^*$ as subword (infix) [**infix**(ξ) = X^*].

Automata and Measure

Unpredictability

Incompressibility

Partial randomness: Subword complexity

Definition (Asymptotic subword complexity)

$$\tau(\xi) := \limsup_{n \to \infty} \frac{\log_r |\inf(\xi) \cap X^n|}{n}$$

 $\operatorname{infix}(\xi) \cap X^{n+m} \subseteq (\operatorname{infix}(\xi) \cap X^n) \cdot (\operatorname{infix}(\xi) \cap X^m)$

Fact

The limit exists and equals
$$\tau(\xi) = \inf \left\{ \frac{\log_r |\inf(\mathbf{x}(\xi) \cap X^n|}{n} : n \in \mathbb{N} \right\}.$$

Proposition

 $0 \le \tau(\xi) \le 1$ and an ω -word $\xi \in X^{\omega}$ is disjunctive if and only if $\tau(\xi) = 1$.

▲ロト▲舂ト▲臣と▲臣と 臣 のへで

Automata and Measure

Unpredictability

Incompressibility

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

Hausdorff dimension I

Automata and Measure

Unpredictability

Incompressibility

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Hausdorff dimension II

Fact

$$\lim_{i \in \mathbb{N}} F_i = \sup \{ \dim F_i : i \in \mathbb{N} \} and \dim \{\xi\} = 0$$

2 If
$$\mu(F) > 0$$
 then dim $F = 1$.

3 If F is regular then dim
$$F = 1$$
 implies $\mu(F) > 0$.

Fact

 $\mathbb{Q} \subset \{\dim F : F \text{ is a regular } \omega \text{-language}\}$

Automata and Measure

Unpredictability

Incompressibility

Partial randomness: The hierarchy

Lemma

If $F \subseteq X^{\omega}$ is a regular ω -language and $\xi \in F$ then $\tau(\xi) \leq \dim F$.

Theorem

- If α = dim F for some regular ω-language then there is a ξ such that τ(ξ) = α.
- **③** For all $\alpha, \gamma, 0 \le \alpha < \gamma \le 1$, the level sets $F_{\alpha}^{(\tau)} := \{\xi : \tau(\xi) \le \alpha\}$ satisfy $F_{\alpha}^{(\tau)} \subset F_{\gamma}^{(\tau)}$.

Open question

Does there, for every α , $0 \le \alpha \le 1$, exist a ξ with $\tau(\xi) = \alpha$.

Unpredictability

▲ロト ▲ 同 ト ▲ 国 ト → 国 - り Q ()

References: Automata and Measure

- Staiger, L.: Reguläre Nullmengen, *Elektron. Informationsverarb. Kybernet.* EIK 12: 307–311 (1976).
- Staiger, L.: Kolmogorov complexity and Hausdorff dimension. *Inform. and Comput.*, 103(2):159–194, (1993).
- Staiger, L.: Rich ω -words and monadic second-order arithmetic. In Mogens Nielsen and Wolfgang Thomas, editors, *Computer Science Logic (Aarhus, 1997)*, LNCS 1414, Springer, 478–490 (1998).
- Staiger, L.: Asymptotic Subword Complexity, In *Languages Alive* 2012, LNCS 7300, Springer, 236–245 (2012).

Automata and Measure

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Gambling finite automaton

Definition (Betting automaton)

 $\mathscr{A} = [X, Q, \mathbb{R}_{\geq 0}, q_0, \delta, v]$ is a finite-state betting automaton : \iff

1 S is a finite set (of states), $q_0 \in Q$,

$$2 \ \delta: Q \times X \to Q,$$

3
$$v : Q \times X \to \mathbb{R}_{\geq 0}$$
 and $\sum_{x \in X} v(q, x) \leq 1$, for all $q \in Q$.

Definition (Capital function of *A*)

$$\begin{array}{lll} \mathcal{V}_{\mathscr{A}}(e) & := & 1, \text{ and} \\ \mathcal{V}_{\mathscr{A}}(wx) & := & r \cdot v(\delta(q_0, w), x) \cdot \mathcal{V}_{\mathscr{A}}(w) \end{array}$$

Automata and Measure

Unpredictability

Incompressibility

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Again: Gambling strategies: martingale $\mathcal{V} = \mathcal{V}_{\mathscr{A}}$

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

BOREL normality

Definition

An ω -word $\xi \in X^{\omega}$ is BOREL *normal* iff every subword (infix) $w \in X^*$ appears with the same frequency.

$$\forall w \left(\lim_{n \to \infty} \frac{|\{i : i \le n \land \xi[0..i] \in X^* \cdot w\}|}{n} \right) = r^{-|w|}$$

Fact

Every BOREL normal ω -word is disjunctive.

Example

The ω -word $\eta = \prod_{w \in X^*} 0^{|w|} \cdot w$ is disjunctive but not BOREL normal.

Automata and Measure

Unpredictability

Incompressibility

▲ロト ▲ 同 ト ▲ 国 ト → 国 - り Q ()

The Theorem of SCHNORR and STIMM

Theorem (SCHNORR and STIMM '72)

If $\xi \in X^{\omega}$ is BOREL normal then for every finite automaton \mathscr{A} it holds

$$\forall^{\infty} n (n \in \mathbb{N} \to \mathcal{V}_{\mathscr{A}}(\xi[0..n]) = \mathcal{V}_{\mathscr{A}}(\xi[0..n+1])), or$$

$$\exists \rho (0 \le \rho < 1 \land \forall^{\infty} n (n \in \mathbb{N} \to \mathcal{V}_{\mathscr{A}} (\xi[0..n]) \le \rho^n)).$$

If $\xi \in X^{\omega}$ is **not** BOREL normal then there are a finite automaton \mathscr{A} and $\rho > 1$ such that

3
$$\forall^{\infty} n (n \in \mathbb{N} \to \mathcal{V}_{\mathscr{A}}(\xi[0..n]) \ge \rho^n).$$

Unpredictability

Incompressibility

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Partial Randomness: Finite-state dimension [DAI ET AL.'04]

Finite-state dimension tries to measure, for $\xi \in X^{\omega}$, the largest exponent α with

$$\mathcal{V}_{\mathscr{A}}(\xi[0..n]) \approx r^{\alpha \cdot n + o(n)}.$$

for some finite automaton \mathscr{A} 'best fitted' to ξ .

More precisely, $\dim_{FS}(\xi) = 1 - \alpha : \iff$

 $\exists \mathscr{A} (\mathcal{V}_{\mathscr{A}} (\xi[0..n]) \geq_{i.o.} r^{\alpha' \cdot n + o(n)} \text{ for } \alpha' < \alpha) \text{, and}$ $\forall \mathscr{A} (\mathcal{V}_{\mathscr{A}} (\xi[0..n]) \leq r^{\alpha' \cdot n + o(n)} \text{ for } \alpha' > \alpha).$

Observe

The higher the dimension dim_{FS}(ξ) the 'more random' the ω -word.

Automata and Measure

Unpredictability

Incompressibility

Finite-state dimension: The hierarchy

$$\dim_{FS}(F) := \sup \{\dim_{FS}(\xi) : \xi \in F\}$$

Fact 1 $0 \le \dim_{FS}(\xi) \le \tau(\xi) \le 1.$ 2 $\xi \in X^{\omega}$ is BOREL normal if and only if $\dim_{FS}(\xi) = 1$ 3 $\dim_{FS}(F) \ge \dim F$

Theorem

Let $F \subseteq X^{\omega}$ be a regular ω -language. Then the following hold.

- **1** There is a $\xi \in F$ such that dim_{*FS*} (ξ) = dim *F*.
- $2 \dim_{FS}(F) = \dim F$

Unpredictability

▲ロト ▲ 同 ト ▲ 国 ト → 国 - り Q ()

Finite-state dimension: Frequency

Let
$$h(\alpha) := -\alpha \cdot \log_2 \alpha - (1 - \alpha) \cdot \log_2 (1 - \alpha)$$
 be the binary SHANNON
entropy and let
FREQ $(\alpha) := \{\xi : \xi \in \{0, 1\}^{\omega} \land \lim_{n \to \infty} \frac{|\xi[0..n]|_1}{n} = \alpha\}$

n

Theorem (DAI ET AL.'04)

Let $\alpha \in [0,1]$ be rational. Then the following hold.

- **1** There is an ω -word $\xi \in X^{\omega}$ having dim_{FS} $(\xi) = \alpha$, and
- 2 dim_{*FS*}(FREQ(α)) = dim FREQ(α) = $h(\alpha)$.

Predicting automaton

- Playing against an ω -word $\xi \in X^{\omega}$.
- Knowing $\xi[0..n-1]$ predict the next symbol $\xi(n)$ or Skip.
- · Predict infinitely often.
- · All but finitely many precictions have to be correct!

Definition (Predicting automaton)

 $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$ is a finite-state predicting automaton : \iff

1 Q is a finite set (of states), $q_0 \in Q$,

$$2 \delta: Q \times X \to Q,$$

3 $\lambda : Q \rightarrow X^*$. [*e* – empty word, that is, Skip]

Unpredictability

Incompressibility

Prediction

Definition (Tadaki '14)

A predicting automaton $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$ predicts $\xi \in X^{\omega}$ if and only if there is an $n_{\xi} \in \mathbb{N}$ such that

• $\lambda(\delta(q_0,\xi[0..n-1])) = \xi(n)$ for infinitely many $n \ge n_{\xi}$, and

2 if $\lambda(\delta(q_0,\xi[0..n-1])) \neq \xi(n)$ then $\lambda(\delta(q_0,\xi[0..n-1])) = e$.

Theorem

Let $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$ be a predicting automaton.

1 If \mathscr{A} predicts ξ then ξ is not disjunctive.

If, moreover, X = {0,1} then every non-disjunctive ξ is predicted by some automaton A_ξ.

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Weak Prediction

Definition

A predicting automaton $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$ weakly predicts $\xi \in X^{\omega}$ if and only if there is an $n_{\xi} \in \mathbb{N}$ such that

- $\ \, \mathbf{\lambda}(\delta(q_0,\xi[0..n-1])) \in X \text{ for infinitely many } n \geq n_{\xi}, \text{ and }$
- **2** if $\lambda(\delta(q_0,\xi[0..n-1])) \in X$ then $\lambda(\delta(q_0,\xi[0..n-1])) \neq \xi(n)$.

Theorem

An ω -word ξ is weakly predictable by some automaton $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$ if and only if it is non-disjunctive.

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Finite-state genericity [AMBOS-SPIES and BUSSE'03]

Let $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$ be a predicting automaton.

Definition

An ω -word $\xi \in X^{\omega}$ meets \mathscr{A} if and only if $\xi[0..n] \cdot \lambda(\delta(q_0, \xi[0..n])) \sqsubset \xi$

for some $n \in \mathbb{N}$.

Theorem

An ω -word ξ is non-disjunctive if and only if it is met by every predicting automaton $\mathscr{A} = [X, Q, q_0, \delta, \lambda]$.

Unpredictability

Incompressibility

Why does 'genericity \equiv measure' hold?

Definition (AMBOS-SPIES, BUSSE'03)

 $F \text{ is generic } : \iff \forall w \exists v (v \in X^* \land F \cap wv \cdot X^{\omega} = \emptyset)$

Fact

 $F \subseteq X^{\omega}$ is generic if and only if F is nowhere dense in CANTOR space.

For regular ω -languages $F \subseteq X^{\omega}$ the following equivalences between 'measure' and 'genericity' hold ([*St'76, '98*]).

	Measure	Category (Density)
very large	$\mu(F) = \mu(X^{\omega})$	F is residual (co-meagre)
large	$\mu(F) eq 0$	F is of 2 nd BAIRE category
small	$\mu(F)=0$	F is of 1 st BAIRE category (meagre)
very small	$\mu(\mathscr{C}(F))=0$	F is nowhere dense

Automata and Measure

Unpredictability

Incompressibility

References: Unpredictability

- Ambos-Spies, K., Busse, E.: Automatic forcing and genericity: On the diagonalization strength of finite automata, *Proceedings of DMTCS 2003*, LNCS 2731, Springer, 97–108 (2003).
- Bourke, C., Hitchcock, J. M., Vinodchandran, N. V.: Entropy rates and finite-state dimension, *Theoretical Computer Science* 349, 3: 392–406 (2005).
- Dai, J.J., Lathrop, J.I, Lutz, J.H., Mayordomo, E.: Finite-state dimension, *Theoretical Computer Science* 310: 1–33 (2004).
- Schnorr, C. P., Stimm, H.: Endliche Automaten und Zufallsfolgen, *Acta Informatica* 1: 345–359 (1972).
- Staiger, L.: Reguläre Nullmengen, *Elektron. Informationsverarb. Kybernet.* EIK 12: 307–311 (1976).
- Staiger, L.: Rich ω-words and monadic second-order arithmetic. In Mogens Nielsen and Wolfgang Thomas, editors, *Computer Science Logic (Aarhus, 1997)*, LNCS 1414, Springer, 478–490 (1998).
- Tadaki, K.: Phase transition and strong predictability. In O. H. Ibarra, L. Kari, and St. Kopecki, editors, *Unconventional Computation and Natural Computation*, LNCS 8553, Springer, 340–352 (2014).

Automata and Measure

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

Compression by transducers

Definition

 $\mathcal{M} = [X, Y, Q, q_0, \delta, \lambda]$ is a generalised sequential machine (or finite transducer) : \iff

- **1** *S* is a finite set (of states), $q_0 \in S$,
- $2 \delta: Q \times X \to Q,$

$$3 \ \lambda: Q \times X \to Y^*.$$

 φ is the mapping related to \mathcal{M} if $\varphi(w) = \lambda(q_0, w)$.

In the sequel we will only consider transducers with Y = X.

Automata and Measure

Unpredictability

Incompressibility

▲ロト ▲ 同 ト ▲ 国 ト → 国 - り Q ()

Compression: Complexity

Complexity of *w* w.r.t. to the transducer \mathcal{M} : $C_{\mathcal{M}}(w) := \inf\{|\pi| : \varphi_{\mathcal{M}}(\pi) = w\}$

Automata and Measure

Unpredictability

Incompressibility

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

The single transducer case [DOTY and MOSER'06]

Definition (Compression along an input)

$$\vartheta_{\mathscr{M}}(\eta) := \liminf_{n \to \infty} \frac{n}{|\varphi(\eta[0..n])|},$$

where ${\mathscr M}$ is a finite transducer and φ its related mapping.

Let
$$\overline{\varphi}(\eta) := \lim_{v \to \eta} \varphi(v)$$
 or $\operatorname{pref}(\overline{\varphi}(\eta)) = \operatorname{pref}(\varphi(\operatorname{pref}(\eta)))$

Theorem

$$\dim_{FS}(\xi) = \inf\{\vartheta_{\mathscr{M}}(\eta) : \mathscr{M} \text{ finite transducer } \land \xi = \overline{\varphi}(\eta)\}$$

Unpredictability

Incompressibility

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 ト - ○ ○ ○ ○

The case of many transducers [CALUDE, St and STEPHAN'14]

Denote by $\ensuremath{\mathcal{T}}$ be the set of all finite transducers.

Definition (Finite-state complexity)

Let $S: X^* \to \mathcal{T}$ be computable enumeration of \mathcal{T} . Then

$$C_{\mathcal{S}}(w) := \inf\{|\sigma| + |\pi| : \mathcal{S}(\sigma) = \mathcal{M} \land \varphi_{\mathcal{M}}(\pi) = w\}$$

is the *finite-state complexity* of the word w w.r.t. the enumeration S.

Here the decompression function $\varphi_{\mathcal{M}}$ is realised by the transducer \mathcal{M} , and the size (length) of σ of the transducer $\mathcal{M} = S(\sigma)$ is taken into account.

Observe that there are only $\leq r^{n+1}$ transducers of size $\leq n$.

Automata and Measure

Unpredictability

Incompressibility

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ▶ ● ○ ○ ○ ○

Enumerations of transducers

Definition (CALUDE, K. SALOMAA and ROBLOT)

A perfect enumeration *S* of all transducers is a partially computable function with a prefix-free and computable domain mapping each $\sigma \in \text{dom}(S)$ to an admissible transducer $S(\sigma)$ in an onto way.

Unpredictability

Incompressibility

MARTIN-LÖF randomness

Definition (Martin-Löf random)

An ω -word ξ is MARTIN-LÖF *random* if and only if $\xi \notin \bigcap_{n \in \mathbb{N}} V_n \cdot X^{\omega}$ for all computably enumerable sets $V \subseteq X^* \times \mathbb{N}$ such that $\mu(V_n \cdot X^{\omega}) \leq r^{-n}$

Theorem

The following statements are equivalent:

- **1** The ω -word ξ is not MARTIN-LÖF random;
- Provide the set of the set of
- Solution There is a perfect enumeration S such that for every c > 0 there exists an n > 0 with C_S(ξ[0..n]) < n c.</p>

Unpredictability

▲ロト ▲ 同 ト ▲ 国 ト → 国 - り Q ()

References: Incompressibility

- Calude, C. S., Salomaa, K., Roblot, T. K.: Finite state complexity, *Theoretical Computer Science* 412: 5668–5677 (2011).
- Calude, C. S., Staiger, L., Stephan, F.: Finite state incompressible infinite sequences, In *Proceedings of TAMC 2014*, LNCS 8402, Springer, 50-66 (2014).
- Doty, D., Moser, P.: Finite-state dimension and lossy compressors, arxiv:cs/0609096v2 (2006).
- Martin-Löf, P.: The definition of random sequences, *Information and Control* 9: 602-619 (1966).