
Notation and Preliminaries Automata and Measure Unpredictability Incompressibility

Finite Automata and Randomness

Ludwig Staiger
Martin-Luther-Universität Halle-Wittenberg

Jewels of Automata: from Mathematics to Applications
Leipzig, May, 2015



Notation and Preliminaries Automata and Measure Unpredictability Incompressibility

Outline

1 Notation and Preliminaries
Notation
Algorithmic Randomness

2 Automata and Measure
Automata on ω-words
Subword complexity

3 Unpredictability
Gambling Strategies for Automata
Finite-state dimension
Other concepts

4 Incompressibility
Sequential compression
Finite-state complexity



Notation and Preliminaries Automata and Measure Unpredictability Incompressibility

Notation: Strings and Languages

Finite Alphabet X = {0, . . . , r −1}, cardinality |X | = r

Finite strings (words) w = x1 · · ·xn ∈ {0,1}∗, xi ∈ {0,1}

Length |w | = n

Languages W ⊆X∗

Infinite strings (ω-words) ξ= x1 · · ·xn · · · ∈Xω

Prefixes of infinite strings ξ[0..n] ∈X∗,
∣∣ξ[0..n]

∣∣= n

ω-Languages F ⊆Xω
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Xω as CANTOR space

Metric: ρ(η,ξ) := inf {r−|w | :w ∈ pref(η)∩pref(ξ)}

Balls: w ·Xω = {η :w ∈ pref(η)} = {η :w @ η}

Diameter: diamw ·Xω = r−|w |

diamF = inf{r−|w | : F ⊆w ·Xω}

Open sets: W ·Xω =⋃
w∈W w ·Xω

Closure: (Smallest closed set containing F )
C (F)= {ξ : pref(ξ)⊆ pref(F)}

Fact

F ⊆Xω is closed if and only if pref(ξ)⊆ pref(F) implies ξ ∈ F.
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Algorithmic Randomness

measure-theoretic paradigm
An ω-word is random if and only if it is not contained in a
constructive null-set.

unpredictability paradigm
An ω-word is random if and only if no constructive
predicting strategy can win against it.

incompressibility (complexity-theoretic) paradigm
An ω-word is random if and only if one cannot
constructively compress infinitely many of its prefixes.
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Measure

Measure on base sets: µ(w ·Xω) := r−|w |

Constructive null-sets: Unions of ω-languages of the form
⋂
n∈N

Vn ·Xω,

where
V ⊆ {

(v ,n) : v ∈X∗∧n ∈N}
is constructive,

Vn := {v : (v ,n) ∈V } and µ(Vn ·Xω)≤ r−n.

Definition (Randomness)

ξ ∈Xω is random if and only if no constructive null-set contains ξ.
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Predicting strategy: Gambling

Our model:
• Playing against an ω-word ξ ∈Xω.
• Gambling strategy Γ :X∗×X → [0,1] (bet on outcome x ∈X )∑

x∈X Γ(w ,x)≤ 1 for w ∈X∗

• yields a (super-)martingale VΓ :X∗ →R+
• VΓ(ξ[0..n]) is the capital after the n th round, that is,

VΓ(ξ[0..n])= r ·Γ(ξ[0..n],x) ·VΓ(ξ[0..n−1]), for ξ(n)= x

Fact (super-martingale property)

VΓ(w)≥ 1
r ·

∑
x∈X VΓ(wx)

Definition (Randomness)

ξ ∈Xω is random if and only if no constructive gambling strategy Γ can
win against ξ, that is, limsupn→∞ VΓ(ξ[0..n])<∞.
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Gambling strategies: martingale V
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Compression: The Principle of Lossless Compression

ϕ
f

description (or program) π ∈X∗

space of descriptions

text w ∈X∗

space of texts

�

-
X∗ X∗

f is injective and ϕ(f (w))=w for all w ∈X∗

Complexity of w w.r.t. ϕ: Cϕ(w) := inf{|π| :ϕ(π)=w}

Definition (Randomness = Incompressibility)

ξ ∈Xω is random if and only if all constructive decompression functions
ϕ satisfy ∃c∀n(Cϕ(ξ[0..n]))≥ n−c, that is, prefixes of ξ cannot be
compressed.
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Automata on ω-words: Büchi-automata

Automaton: A = (X ,Q,∆,q0,Qfin) with
∆⊆Q×X ×Q, q0 ∈Q, Qfin ⊆Q

Run on ξ: (qi)i∈N with ∀i ≥ 0 : (qi ,ξ(i +1),qi+1) ∈∆

q0 q1 q2 qi−1 qi

↘ ↑ ↘ ↑ ·· · ↑ ↘ ↑ ↘ ·· ·
ξ(1) ξ(2) ξ(i −1) ξ(i)

A accepts ξ: ∃(qi)i∈N ∀i ≥ 0 : (qi ,ξ(i +1),qi+1) ∈∆ ∧
∃∞k : qk ∈Qfin

A accepts F : F = {
ξ :A accepts ξ

}
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Regular ω-languages

Definition (Regular ω-language)

An ω-language F ⊆Xω is called regular if and only if F is accepted by a
finite automaton

Theorem (BÜCHI 1962)

1 An ω-language F ⊆Xω is regular if and only if F =⋃n
i=1 Wi ·Vω

i for
some n ∈N and regular languages Wi ,Vi ⊆X∗.

2 The set of regular ω-languages over X is closed under Boolean
operations.
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Regular null-sets

Theorem (St’76,St’98)

Let F be a regular ω-language.

1 If F is closed then µ(F)= 0 if and only if there is word w ∈X∗ such
that

F ⊆Xω \ X∗ ·w ·Xω .

2 µ(F)= 0 if and only if
F ⊆⋃

w∈X∗ Xω \ X∗ ·w ·Xω .

Remark

This theorem holds for a much larger class of finite measures on Xω.

Definition (Randomness = Disjunctivity)

An ω-word ξ ∈Xω is called disjunctive (or rich or saturated) if and only if
it contains every word w ∈X∗ as subword (infix) [infix(ξ)=X∗].
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Partial randomness: Subword complexity

Definition (Asymptotic subword complexity)

τ(ξ) := limsupn→∞
logr |infix(ξ)∩X n|

n

infix(ξ)∩X n+m ⊆ (infix(ξ)∩X n) · (infix(ξ)∩X m)

Fact

The limit exists and equals τ(ξ)= inf
{

logr |infix(ξ)∩X n|
n : n ∈N

}
.

Proposition

0≤ τ(ξ)≤ 1 and an ω-word ξ ∈Xω is disjunctive if and only if τ(ξ)= 1.
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Hausdorff dimension I

Lα(F) := lim
n→∞ inf

{ ∑
v∈V

r−α·|v | : F ⊆ ⋃
v∈V

v ·Xω∧min
v∈V

|v | ≥ n
}

6

-
r

Lα(F)

α

0 1
α0 = dimF

Lα0(F)

∞

0

dimF := inf{α : Lα(F)= 0} = sup{α : Lα(F)=∞}
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Hausdorff dimension II

Fact

1 dim
⋃

i∈N
Fi = sup

{
dimFi : i ∈N}

and dim{ξ} = 0

2 If µ(F)> 0 then dimF = 1.

3 If F is regular then dimF = 1 implies µ(F)> 0.

Fact

Q⊂ {
dimF : F is a regular ω-language

}
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Partial randomness: The hierarchy

Lemma

If F ⊆Xω is a regular ω-language and ξ ∈ F then τ(ξ)≤ dimF.

Theorem

1 τ(ξ)= inf
{
dimF : ξ ∈ F ∧F is a regular ω-language

}
2 If α= dimF for some regular ω-language then there is a ξ such

that τ(ξ)=α.

3 For all α,γ,0≤α< γ≤ 1, the level sets F (τ)
α := {ξ : τ(ξ)≤α}

satisfy F (τ)
α ⊂ F (τ)

γ .

Open question

Does there, for every α,0≤α≤ 1, exist a ξ with τ(ξ)=α.
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Gambling finite automaton

Definition (Betting automaton)

A = [X ,Q,R≥0,q0,δ,ν] is a finite-state betting automaton :⇐⇒
1 S is a finite set (of states), q0 ∈Q,

2 δ :Q×X →Q,

3 ν :Q×X →R≥0 and
∑

x∈X ν(q,x)≤ 1, for all q ∈Q.

Definition (Capital function of A )

VA (e) := 1, and
VA (wx) := r ·ν(δ(q0,w),x) ·VA (w)
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Again: Gambling strategies: martingale V = VA
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BOREL normality

Definition

An ω-word ξ ∈Xω is BOREL normal iff every subword (infix) w ∈X∗

appears with the same frequency.

∀w( lim
n→∞

|{i : i ≤ n∧ξ[0..i] ∈X∗ ·w}|
n

)= r−|w |

Fact

Every BOREL normal ω-word is disjunctive.

Example

The ω-word η=∏
w∈X∗ 0|w | ·w is disjunctive but not BOREL normal.
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The Theorem of SCHNORR and STIMM

Theorem (SCHNORR and STIMM ’72)

If ξ ∈Xω is BOREL normal then for every finite automaton A it holds

1 ∀∞n(n ∈N→ VA (ξ[0..n])= VA (ξ[0..n+1])), or

2 ∃ρ(0≤ ρ < 1∧∀∞n(n ∈N→ VA (ξ[0..n])≤ ρn)).

If ξ ∈Xω is not BOREL normal then there are a finite automaton A and
ρ > 1 such that

3 ∀∞n(n ∈N→ VA (ξ[0..n])≥ ρn) .
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Partial Randomness: Finite-state dimension [DAI ET AL.’04]

Finite-state dimension tries to measure, for ξ ∈Xω, the largest exponent
α with

VA (ξ[0..n])≈ rα·n+o(n).

for some finite automaton A ’best fitted’ to ξ.

More precisely, dimFS(ξ)= 1−α :⇐⇒

∃A
(
VA (ξ[0..n]) ≥i .o. rα

′·n+o(n) for α′ <α)
, and

∀A
(
VA (ξ[0..n]) ≤ rα

′·n+o(n) for α′ >α)
.

Observe

The higher the dimension dimFS(ξ) the ’more random’ the ω-word.
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Finite-state dimension: The hierarchy

dimFS(F) := sup
{
dimFS(ξ) : ξ ∈ F

}
Fact

1 0≤ dimFS(ξ)≤ τ(ξ)≤ 1.

2 ξ ∈Xω is BOREL normal if and only if dimFS(ξ)= 1

3 dimFS(F)≥ dimF

Theorem

Let F ⊆Xω be a regular ω-language. Then the following hold.

1 There is a ξ ∈ F such that dimFS(ξ)= dimF.

2 dimFS(F)= dimF

3 Q⊂ {
dimFS F : F is a regular ω-language

}
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Finite-state dimension: Frequency

Let h(α) :=−α · log2α− (1−α) · log2(1−α) be the binary SHANNON

entropy and let

FREQ(α) := {
ξ : ξ ∈ {0,1}ω∧ lim

n→∞
|ξ[0..n]|1

n
=α}

Theorem (DAI ET AL.’04)

Let α ∈ [0,1] be rational. Then the following hold.

1 There is an ω-word ξ ∈Xω having dimFS(ξ)=α, and

2 dimFS(FREQ(α))= dim FREQ(α)= h(α).
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Predicting automaton

• Playing against an ω-word ξ ∈Xω.

• Knowing ξ[0..n−1] predict the next symbol ξ(n) or Skip.

• Predict infinitely often.

• All but finitely many precictions have to be correct!

Definition (Predicting automaton)

A = [X ,Q,q0,δ,λ] is a finite-state predicting automaton :⇐⇒
1 Q is a finite set (of states), q0 ∈Q,

2 δ :Q×X →Q,

3 λ :Q →X∗. [e – empty word, that is, Skip]



Notation and Preliminaries Automata and Measure Unpredictability Incompressibility

Prediction

Definition (Tadaki ’14)

A predicting automaton A = [X ,Q,q0,δ,λ] predicts ξ ∈Xω if and only if
there is an nξ ∈N such that

1 λ(δ(q0,ξ[0..n−1]))= ξ(n) for infinitely many n ≥ nξ, and

2 if λ(δ(q0,ξ[0..n−1])) 6= ξ(n) then λ(δ(q0,ξ[0..n−1]))= e.

Theorem

Let A = [X ,Q,q0,δ,λ] be a predicting automaton.

1 If A predicts ξ then ξ is not disjunctive.

2 If, moreover, X = {0,1} then every non-disjunctive ξ is predicted by
some automaton Aξ.
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Weak Prediction

Definition

A predicting automaton A = [X ,Q,q0,δ,λ] weakly predicts ξ ∈Xω if and
only if there is an nξ ∈N such that

1 λ(δ(q0,ξ[0..n−1])) ∈X for infinitely many n ≥ nξ, and

2 if λ(δ(q0,ξ[0..n−1])) ∈X then λ(δ(q0,ξ[0..n−1])) 6= ξ(n).

Theorem

An ω-word ξ is weakly predictable by some automaton
A = [X ,Q,q0,δ,λ] if and only if it is non-disjunctive.
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Finite-state genericity [AMBOS-SPIES and BUSSE’03]

Let A = [X ,Q,q0,δ,λ] be a predicting automaton.

Definition

An ω-word ξ ∈Xω meets A if and only if
ξ[0..n] ·λ(δ(q0,ξ[0..n]))@ ξ

for some n ∈N.

Theorem

An ω-word ξ is non-disjunctive if and only if it is met by every predicting
automaton A = [X ,Q,q0,δ,λ].
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Why does ’genericity ≡ measure’ hold?

Definition (AMBOS-SPIES, BUSSE’03)

F is generic :⇐⇒ ∀w∃v(v ∈X∗∧ F ∩wv ·Xω =;)

Fact

F ⊆Xω is generic if and only if F is nowhere dense in CANTOR space.

For regular ω-languages F ⊆Xω the following equivalences between
’measure’ and ’genericity’ hold ([St’76, ’98]).

Measure Category (Density)

very large µ(F)=µ(Xω) F is residual (co-meagre)

large µ(F) 6= 0 F is of 2nd BAIRE category

small µ(F)= 0 F is of 1st BAIRE category (meagre)

very small µ(C (F))= 0 F is nowhere dense
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Compression by transducers

Definition

M = [X ,Y ,Q,q0,δ,λ] is a generalised sequential machine (or finite
transducer ) :⇐⇒

1 S is a finite set (of states), q0 ∈S,

2 δ :Q×X →Q,

3 λ :Q×X →Y∗.

ϕ is the mapping related to M if ϕ(w)=λ(q0,w).

In the sequel we will only consider transducers with Y =X .
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Compression: Complexity

ϕM

description (or program) π ∈X∗

space of descriptions

text w ∈X∗

space of texts

�X∗ X∗

Complexity of w w.r.t. to the transducer M :
CM (w) := inf{|π| :ϕM (π)=w}



Notation and Preliminaries Automata and Measure Unpredictability Incompressibility

The single transducer case [DOTY and MOSER’06]

Definition (Compression along an input)

ϑM (η) := liminf
n→∞

n

|ϕ(η[0..n])| ,

where M is a finite transducer and ϕ its related mapping.

Let ϕ(η) := lim
v→η

ϕ(v) or pref(ϕ(η))= pref(ϕ(pref(η)))

Theorem

dimFS(ξ)= inf
{
ϑM (η) :M finite transducer ∧ξ=ϕ(η)}
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The case of many transducers [CALUDE, St and STEPHAN’14]

Denote by T be the set of all finite transducers.

Definition (Finite-state complexity)

Let S :X∗ →T be computable enumeration of T . Then

CS(w) := inf
{|σ|+ |π| :S(σ)=M ∧ϕM (π)=w

}
is the finite-state complexity of the word w w.r.t. the enumeration S.

Here the decompression function ϕM is realised by the transducer M ,
and the size (length) of σ of the transducer M =S(σ) is taken into
account.
Observe that there are only ≤ rn+1 transducers of size ≤ n.
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Enumerations of transducers

Definition (CALUDE, K. SALOMAA and ROBLOT)

A perfect enumeration S of all transducers is a partially computable
function with a prefix-free and computable domain mapping each
σ ∈ dom(S) to an admissible transducer S(σ) in an onto way.
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MARTIN-LÖF randomness

Definition (Martin-Löf random)

An ω-word ξ is MARTIN-LÖF random if and only if ξ ∉⋂
n∈NVn ·Xω for all

computably enumerable sets V ⊆X∗×N such that µ(Vn ·Xω)≤ r−n

Theorem

The following statements are equivalent:

1 The ω-word ξ is not MARTIN-LÖF random;

2 There is a perfect enumeration S such that for every c > 0 and
almost all n > 0 we have CS(ξ[0..n])< n−c;

3 There is a perfect enumeration S such that for every c > 0 there
exists an n > 0 with CS(ξ[0..n])< n−c.
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