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Notation: Strings and Languages

Finite Alphabet X ={0,...,r—1}, cardinality |X|=r
Finite strings (words) w = xj---x, € {0,1}*, x; € {0,1}
Length lwl=n

Languages Wg<X*

Infinite strings (w-words) & =xy-+-xp--+ € X?
Prefixes of infinite strings €[0..n] € X*, |€[0..n]| =n

w-Languages F < X
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X as CANTOR space

Metric: p(n,&) :=inf{r~"!: w € pref(n) N pref(&)}
Balls: w-X“ ={n:wepref(n)=1{n:wCn
Diameter: diamw - X% = r~"!
diam F =inf{r"": Fcw. X}
Opensets: W-XY=Upeww-X“

Closure: (Smallest closed set containing F)
€ (F)=1{¢ : pref(¢) < pref(F)}

F < X“ is closed if and only if pref(¢) < pref(F) implies ¢ € F.
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Algorithmic Randomness

measure-theoretic paradigm
An w-word is random if and only if it is not contained in a
constructive null-set.

unpredictability paradigm
An w-word is random if and only if no constructive
predicting strategy can win against it.

incompressibility (complexity-theoretic) paradigm
An w-word is random if and only if one cannot
constructively compress infinitely many of its prefixes.
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Measure

Measure on base sets: p(w-X®):= =1

Constructive null-sets: Unions of w-languages of the form ﬂ Vy- XY,
neN
where

Ve {(v,n):veX* AneN} is constructive,
Voi={v:(v,n)e Viand p(V,-X“)<r™".

Definition (Randomness)

¢ € X is random if and only if no constructive null-set contains ¢.
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Predicting strategy: Gambling

Our model:
+ Playing against an w-word ¢ € X?.
- Gambling strategy T': X* x X — [0,1] (bet on outcome x € X)
YxexT(w,x) <1 forwe X*
- yields a (super-)martingale 71 : X* — R,
* 77(&[0..n]) is the capital after the nth round, that is,

71 (&[0..n]) = r-T(&[0..n], x) - 31 (£]0..n—1]), for &(n) = x

Fact (super-martingale property)

7/F(W erX 7/F WX)

Definition (Randomness)
& € X? is random if and only if no constructive gambling strategy I' can
win against &, that is, limsup,,_o, 7 (£[0..n]) < co.

A
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Gambling strategies: martingale 7

7(01)  ¥(10)
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Compression: The Principle of Lossless Compression

text we X* description (or program) 7 € X*
_f
X* X*
space of texts space of descriptions

f is injective and ¢(f(w)) = w for all w € X*

Complexity of w w.r.t. ¢: Cp(w) :=inf{|7| : () = w}

Definition (Randomness = Incompressibility)

¢ € X is random if and only if all constructive decompression functions
¢ satisfy 3cVn(Cy(¢[0..n])) = n—c, that is, prefixes of ¢ cannot be
compressed.
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Automata on w-words: Blchi-automata

Automaton: «f = (X, Q, A, qo, Qan) With
AcQxXxQ, e, QGin S Q

Runon & (gi)ien wWith Vi=0: (g, &(i+1),qi+1) €A

Qo a1 Q2 Qi1 Qi
NN e ! NN
¢(1) $(2) ¢(i—1) ¢(i)

o accepts &1 Aqi)ien Viz0:(gi,é(i+1),qis1)EA A
HOOk L Qk € Qﬁn
o accepts F: F ={¢: of accepts &}
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Regular w-languages

Definition (Regular w-language)
An w-language F < X“ is called regular if and only if F is accepted by a
finite automaton

Theorem (BUCHI 1962)

© Anw-language F < X is regular if and only if F = UL, W;- V{ for
some ne N and regular languages W;, V; < X*.

® The set of reqular w-languages over X is closed under Boolean
operations.
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Regular null-sets

Theorem (St’76,St'98)
Let F be a regular w-language.

© If F is closed then u(F) = 0 if and only if there is word w € X* such
that
FS X\ X*-w-X?.
® p(F)=0ifand only if
F SUpexs XO\X*-w- X2,

This theorem holds for a much larger class of finite measures on X“.

Definition (Randomness = Disjunctivity)

An w-word ¢ € X® is called disjunctive (or rich or saturated) if and only if
it contains every word w € X* as subword (infix) [infix(&) = X*].
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Partial randomness: Subword complexity

Definition (Asymptotic subword complexity)
log, linfix(&) N X"
n

7(&) :=limsup,_o

infix(&) N X™™ < (infix(&) N X") - (infix(&) N X™)

log, linfix(&)nX"| .

The limit exists and equals () = inf{

Proposition

0<1(&) <1 and an w-word & € X is disjunctive if and only if T(&) = 1.
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Hausdorff dimension 1

Lo(F):= lim inf{ 3" r oM Fe | v-X® Amin|v] > n}

n—oo
veV veV

AL (F)

0 ap=dimF !

dim F:=infla : L (F) = 0} = sup{a : Lo (F) = oo}
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Hausdorff dimension 11

@ dim U Fj =sup{dimF;:ieN} anddim{} =0
ieN

® Ifu(F)>0thendimF =1.
@® IfF is regular then dim F = 1 implies pu(F) > 0.

Qc {dim F: F is a regular w-/anguage}
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Partial randomness: The hierarchy

If F < X“ is a regular w-language and ¢ € F then T(&) < dimF.

O (&) =inf{dimF : & € F A F is a regular w-language }

® I/fa =dim F for some regular w-language then there is a & such
thatt(¢) =a.

® Foralla,y,0<a<y<1, the level sets Fgf) = 1) <a}
satisfy F') < F)(,T).

A

Open question

Does there, for every @,0 < a <1, exist a ¢ with 7(¢) = a.
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Gambling finite automaton

Definition (Betting automaton)

 =[X,Q,Rx0,q0,6,v] is a finite-state betting automaton : <
© Sis afinite set (of states), qo € Q,
®5:QxX—Q,
® v:QxX—Rxpand Y,exv(g x)<1,foralgeqQ.

Definition (Capital function of <)

Vy(e) = 1, and
Veg(wx) = r-v(6(qo,w),x) - Vey(w)
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Again: Gambling strategies: martingale 7' =7,

7(01)  ¥(10)
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BOREL normality

Definition
An w-word ¢ € X* is BOREL normal iff every subword (infix) w € X*
appears with the same frequency.

ww( lim l{i:i<nn&f0..i]e X - wi

n—oo n

Every BOREL normal w-word is disjunctive.
The w-word 1) = [Tyex- 0! - w is disjunctive but not BOREL normal.

):r—IWI
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The Theorem of SCHNORR and STIMM

Theorem (SCHNORR and STIMM *72)
If& € X¥ is BOREL normal then for every finite automaton < it holds
@ Veon(neN— 74 (&[0..n]) = Vo4 (&[0..n+1])), or
® Fp(0<p<1AV®n(neN— ¥ (&[0..n]) < p™)).

If& € X“ is not BOREL normal then there are a finite automaton </ and
p > 1 such that

® Von(neN— 7, (&[0..n]) = p").
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Partial Randomness: Finite-state dimension [DAI ET AL."04]

Finite-state dimension tries to measure, for ¢ € X, the largest exponent
a with

V.4 (€]0..n]) = ren+o(n),

for some finite automaton < ‘best fitted’to &.
More precisely, dimgs(¢) =1—a: <
3 (Vg (E[0..0])  =j0. r® ™" fora’'<a),and

Vel (Vg (E[0.0]) < r¥ o) fora’>a).

Observe
The higher the dimension dimgs(&) the *more random’ the w-word.
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Finite-state dimension: The hierarchy

dimes(F) :=sup{dimgs(&) : € € F}

O 0=dimgs(é) s7(¢) <1.
® ¢ € X is BOREL normal if and only if dimgs(¢) =1
@ dimes(F) =dimF

Let F < X® be a regular w-language. Then the following hold.
@ Thereis aé € F such that dimgg(&) =dimF.
® dimgs(F) =dimF
® Qc{dimgsF: F is a regular w-language }

A
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Finite-state dimension: Frequency

Let h(a) := —a-log, a — (1 — ) -log,(1 — ) be the binary SHANNON
entropy and let

FREQ(«) := {f :£e0,1}® Anll»”;oM - a}

Theorem (DAI ET AL.04)

Let a € [0, 1] be rational. Then the following hold.
@ There is an w-word & € X having dimrs(¢) = a, and
® dimes(FREQ(a)) = dim FREQ(«) = h(a).
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Predicting automaton

+ Playing against an w-word ¢ € X%,

+ Knowing &[0..n— 1] predict the next symbol &(n) or Skip.
+ Predict infinitely often.

+ All but finitely many precictions have to be correct!

Definition (Predicting automaton)

o =[X,Q,qo0,6,A] is a finite-state predicting automaton : <=
© Qs afinite set (of states), qo € Q,
®0:QxX—Q,
® 1:Q— X*.[e—-empty word, that is, Skip]
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Prediction

Definition (Tadaki *14)

A predicting automaton < = [X, Q, qo,8, A] predicts & € X if and only if
there is an ng € N such that

O A(6(qo,¢[0..n—1])) =¢(n) for infinitely many n = ng, and
® if A(6(qo,¢[0..n—1])) # &(n) then A(8(qo,¢[0..n—1])) =e.

Let o/ =[X,Q,qo,8, ] be a predicting automaton.

@ /f < predicts € then ¢ is not disjunctive.

® If, moreover, X = {0,1} then every non-disjunctive & is predicted by
some automaton 4.
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Weak Prediction

Definition
A predicting automaton < = [X, Q, qo, 8, ] weakly predicts ¢ € X if and
only if there is an n: € N such that

O A(6(qo,¢[0..n—1])) € X for infinitely many n = ng, and

@ if A(6(qo,¢[0..n—1])) € X then A(6(qo,&[0..n—1])) # E(n).

An w-word ¢ is weakly predictable by some automaton
o =[X,Q,q0,0,A] if and only if it is non-disjunctive.
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Finite-state genericity [AMBOS-SPIES and BUSSE’'03]

Let o = [X, Q, qo,0, A] be a predicting automaton.

Definition

An w-word ¢ € X® meets </ if and only if
¢[0..n] - A(5(qo, [0..n])) C &

for some ne N.

An w-word ¢ is non-disjunctive if and only if it is met by every predicting
automaton < = [X, Q, qo, 6, A].
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Why does ’genericity = measure’ hold?

Definition (AMBOS-SPIES, BUSSE’03)
Fis generic : <= Ywav(ve X* A FNwv-X“ =9)

F < X® is generic if and only if F is nowhere dense in CANTOR space.

For regular w-languages F < X“ the following equivalences between
'measure’ and ‘genericity’ hold ([St’76, '98]).

Measure Category (Density)
very large | p(F) = u(X*) F is residual (co-meagre)
large u(F)#0 F is of 2" BAIRE category
small u(F)=0 F is of 15! BAIRE category (meagre)
very small | u(€(F))=0 F is nowhere dense
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Compression by transducers

Definition

A =[X,Y,Q,q,06,] is a generalised sequential machine (or finite
transducer) : <

© S is afinite set (of states), qo € S,
®5:QxX—Q,
O 1L:QxX— Y™

¢ is the mapping related to . if p(w) = A(qo, w).

In the sequel we will only consider transducers with Y = X.
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Compression: Complexity

text we X* description (or program) 7 € X*
X* Pu X*
space of texts space of descriptions

Complexity of w w.r.t. to the transducer .4 :
Cu(w):=inf{lz|: @ y(m)=w}
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The single transducer case [DOTY and MOSER’06]

Definition (Compression along an input)

OB et

where ./ is a finite transducer and ¢ its related mapping.

Let p(n) := lim ¢(v) or pref(¢(n)) = pref(¢(pref(n)))

dimes(€) =inf{9_4(n) : A finite transducer A& =p(n)}
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The case of many transducers [CALUDE, St and STEPHAN’14]

Denote by 9~ be the set of all finite transducers.

Definition (Finite-state complexity)

Let S: X* — 9 be computable enumeration of 7. Then

Cs(w) :=inf{lo|+|n|: S(0) =M Np_y(7) = w}

is the finite-state complexity of the word w w.r.t. the enumeration S.

Here the decompression function ¢_4 is realised by the transducer ./,
and the size (length) of o of the transducer .# = S(o) is taken into
account.

Observe that there are only < r™' transducers of size < n.
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Enumerations of transducers

Definition (CALUDE, K. SALOMAA and ROBLOT)

A perfect enumeration S of all transducers is a partially computable
function with a prefix-free and computable domain mapping each
o € dom(S) to an admissible transducer S(o) in an onto way.
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MARTIN-LOF randomness

Definition (Martin-L&f random)

An w-word ¢ is MARTIN-LOF random if and only if & & (Npen Vi - X for all
computably enumerable sets V < X* x N such that u(V,-X®)<r™"

Theorem

The following statements are equivalent:
© The w-word & is not MARTIN-LOF random;

@® There is a perfect enumeration S such that for every ¢ >0 and
almost all n> 0 we have Cg(¢[0..n]) < n—c;

® There is a perfect enumeration S such that for every ¢ > 0 there
exists an n> 0 with Cs(£[0..n]) <n—c.
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