Around Banach-Mazur games

Thomas Brihaye

University of Mons - Belgium

> AutoMathA 2015
> Leipzig, May $6-9,2015$

The goal of this talk is to present:
my personal encounter with Banach-Mazur games.
They talk will not reflect an historical perspective ${ }^{1}$!
${ }^{1}$ except from my personal point of view.

The goal of this talk is to present:
my personal encounter with Banach-Mazur games.
They talk will not reflect an historical perspective ${ }^{1}$!

I would like to address the following questions:

- Where, when and how did I discover Banach-Mazur games ?
- Why should you fall in love with them ? (as I already did)
${ }^{1}$ except from my personal point of view.

Outline

(1) Where, when and how did I discover Banach-Mazur games?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...
(4) Simple strategies in Banach-Mazur games

Computer programming and software bugs

Computer programming is a difficult task which is error-prone

Definition
 A software bug is an error, a failure in a computer program or system that induces an incorrect result.

Bug example: In August 2005, a Malaysian Airlines Boeing 777 that was on autopilot suddenly ascended 3,000 feet.

No need to argue that software without bugs are highly desirable...

A possible solution to automatically check correctness: model-checking

The model-checking picture

Specification arrive safely,...

The model-checking picture

The model-checking picture

Model-checking - A 'concrete’ example

A faulty coffee/tea machine

Every coffee request provides a coffee

Model-checking - A 'concrete’ example

A faulty coffee/tea machine

Every coffee request provides a coffee

$$
\varphi_{c} \equiv \mathbf{G}\left(r_{c} \Rightarrow \mathbf{X} c\right)
$$

Model-checking - An important result

How to check 'efficiently' whether $\mathcal{A}_{\text {syst }} \vDash \varphi_{c}$?

Theorem [VW86]
Every (LTL) formula can be translated into an equivalent automaton.
[VW86] M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 1986: 332-344.

$$
\begin{array}{lll}
\mathcal{A}_{\text {Syst }}=\varphi_{c} & \text { iff } & \mathcal{L}\left(\mathcal{A}_{S_{y s t}}\right) \subseteq \mathcal{L}\left(\mathcal{A}_{\varphi_{c}}\right) \\
& \text { iff } & \mathcal{L}\left(\mathcal{A}_{S_{y s t}}\right) \cap \mathcal{L}^{c}\left(\mathcal{A}_{\varphi_{c}}\right)=\emptyset
\end{array}
$$

Outline

(1) Where, when and how did I discover Banach-Mazur games?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...
(4) Simple strategies in Banach-Mazur games

Summer 2006

- I had just obtained my PhD (model-checking timed systems).

Summer 2006

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...

Summer 2006

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...
- We were at LICS in Seattle where:
- The paper [VW86] obtained the Test-of-time award!
M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86

Summer 2006

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...
- We were at LICS in Seattle where:
- The paper [VW86] obtained the Test-of-time award! M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86
- The paper [VV06] about fair model-checking was presented.
D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006

Summer 2006

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...
- We were at LICS in Seattle where:
- The paper [VW86] obtained the Test-of-time award! M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86
- The paper [VV06] about fair model-checking was presented.
D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006

With Patricia, we decided to work on fair model-checking for TA

The coin example

Some limits of the classical model-checking approach

Classical Model-Checking

Given a model M and a property φ, decide whether:
$M \models \varphi, \quad$ i.e. $\{\rho$ execution of $M \mid \rho \not \models \varphi\}$ is empty.

$M_{\text {coin }} \not \models \mathbf{F}$ head $\quad ; \quad M_{\text {coin }} \not \models \mathbf{G F}$ tails

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:
$M \approx \varphi$, i.e. $\{\rho$ execution of $M \mid \rho \not \vDash \varphi\}$ is "very small" i.e. $\{\rho$ execution of $M \mid \rho \models \varphi\}$ is "very big"

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:
$M \approx \varphi$, i.e. $\{\rho$ execution of $M \mid \rho \not \vDash \varphi\}$ is "very small" i.e. $\{\rho$ execution of $M|\rho|=\varphi\}$ is "very big"

How to formalise the fair model-checking ?

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:
$M \approx \varphi$, i.e. $\{\rho$ execution of $M \mid \rho \not \vDash \varphi\}$ is "very small" i.e. $\{\rho$ execution of $M|\rho|=\varphi\}$ is "very big"

How to formalise the fair model-checking ?
Maybe the most natural answer: via probability

$$
\begin{array}{lll}
M \approx_{\mathbb{P}} \varphi & \text { iff } & \mathbb{P}(\{\rho \text { of } M \mid \rho \not \models \varphi\})=0 \\
& \text { iff } & \mathbb{P}(\{\rho \text { of } M|\rho|=\varphi\})=1
\end{array}
$$

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:
$M \approx \varphi$, i.e. $\{\rho$ execution of $M \mid \rho \not \vDash \varphi\}$ is "very small" i.e. $\{\rho$ execution of $M|\rho|=\varphi\}$ is "very big"

How to formalise the fair model-checking ?
Alternative answer: via topology

Fair model－checking

Fair Model－Checking

Given a model M and a property φ ，decide whether：

$$
\begin{array}{ll}
M \approx \varphi, & \text { i.e. }\{\rho \text { execution of } M \mid \rho \not \models \varphi\} \text { is "very small" } \\
& \text { i.e. }\{\rho \text { execution of } M|\rho|=\varphi\} \text { is "very big" }
\end{array}
$$

How to formalise the fair model－checking ？
Alternative answer：via topology
What is a＂very big＂（or a＂very small＂）set in topology ？

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:

$$
\begin{array}{ll}
M \approx \varphi, & \text { i.e. }\{\rho \text { execution of } M \mid \rho \not \models \varphi\} \text { is "very small" } \\
& \text { i.e. }\{\rho \text { execution of } M|\rho|=\varphi\} \text { is "very big" }
\end{array}
$$

How to formalise the fair model-checking ?
Alternative answer: via topology
What is a "very big" (or a "very small") set in topology ?
Could dense sets be the "very big" sets ?

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:
$M \approx \varphi$, i.e. $\{\rho$ execution of $M \mid \rho \not \vDash \varphi\}$ is "very small" i.e. $\{\rho$ execution of $M|\rho|=\varphi\}$ is "very big"

How to formalise the fair model-checking ?
Alternative answer: via topology
What is a "very big" (or a "very small") set in topology ?
Could dense sets be the "very big" sets ?
\ldots in $(\mathbb{R},|\cdot|)$, we have that \mathbb{Q} is dense and $\mathbb{R} \backslash \mathbb{Q}$ is dense...

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:

$$
\begin{array}{ll}
M \approx \varphi, & \text { i.e. }\{\rho \text { execution of } M \mid \rho \not \models \varphi\} \text { is "very small" } \\
& \text { i.e. }\{\rho \text { execution of } M \mid \rho \models \varphi\} \text { is "very big" }
\end{array}
$$

How to formalise the fair model-checking ?
Alternative answer: via topology
What is a "very big" (or a "very small") set in topology ?
Could dense sets be the "very big" sets ? No

Fair model-checking

Fair Model-Checking

Given a model M and a property φ, decide whether:

$$
\begin{array}{ll}
M \approx \varphi, & \text { i.e. }\{\rho \text { execution of } M \mid \rho \not \models \varphi\} \text { is "very small" } \\
& \text { i.e. }\{\rho \text { execution of } M \mid \rho \models \varphi\} \text { is "very big"" }
\end{array}
$$

How to formalise the fair model-checking ?
Alternative answer: via topology
What is a "very big" (or a "very small") set in topology ?
Could dense sets be the "very big" sets ? No
"Very small" is meagre, i.e. countable union of nowhere dense sets.
"Very big" is large, i.e. complements of meagre sets.

Few words on meagre sets and large sets

Definitions

Let (X, τ) be a topological space. A set $W \subseteq X$ is:

- nowhere dense if the closure of W has empty interior. Examples in $(\mathbb{R},|\cdot|):\{a\}$ with $a \in \mathbb{R}, \mathbb{Z}$, the Cantor set,...

Remark

Nowhere dense sets are not stable under countable union: $\mathbb{Q}=\cup_{q \in \mathbb{Q}}\{q\}$

Few words on meagre sets and large sets

Definitions

Let (X, τ) be a topological space. A set $W \subseteq X$ is:

- nowhere dense if the closure of W has empty interior.

Examples in $(\mathbb{R},|\cdot|):\{a\}$ with $a \in \mathbb{R}, \mathbb{Z}$, the Cantor set, \ldots

- meagre if it is a countable union of nowhere dense sets.

Remark

Nowhere dense sets are not stable under countable union: $\mathbb{Q}=\cup_{q \in \mathbb{Q}}\{q\}$

Remark
 Meagre sets are also known as sets of first category.

Few words on meagre sets and large sets

Definitions

Let (X, τ) be a topological space. A set $W \subseteq X$ is:

- nowhere dense if the closure of W has empty interior.

Examples in $(\mathbb{R},|\cdot|):\{a\}$ with $a \in \mathbb{R}, \mathbb{Z}$, the Cantor set,...

- meagre if it is a countable union of nowhere dense sets.
- large if W^{c} is meagre.

Remark

Nowhere dense sets are not stable under countable union: $\mathbb{Q}=\cup_{q \in \mathbb{Q}}\{q\}$

Remark
 Meagre sets are also known as sets of first category.

Remark

Large sets are also known as residual sets.

My first encounter with Banach-Mazur game...
Fair Model-Checking problem - topological version
Given a model M and a property φ, decide (algorithmically) whether:

$$
\{\rho \text { exec. of } M \mid \rho \models \varphi\} \text { is large. }
$$

In other words, we need to check whether
$\{\rho$ exec. of $M \mid \rho \not \vDash \varphi\}$ is a countable union of nowhere dense sets.

My first encounter with Banach-Mazur game...
Fair Model-Checking problem - topological version
Given a model M and a property φ, decide (algorithmically) whether:

$$
\{\rho \text { exec. of } M|\rho|=\varphi\} \text { is large. }
$$

In other words, we need to check whether
\{ ρ exec. of $M \mid \rho \not \vDash \varphi\}$ is a countable union of nowhere dense sets.

It does not look like an easy task...

My first encounter with Banach-Mazur game...

Fair Model-Checking problem - topological version
Given a model M and a property φ, decide (algorithmically) whether:

$$
\{\rho \text { exec. of } M \mid \rho \models \varphi\} \text { is large. }
$$

In other words, we need to check whether
$\{\rho$ exec. of $M \mid \rho \not \models \varphi\}$ is a countable union of nowhere dense sets.

It does not look like an easy task...

Theorem [Oxtoby57]

Let (X, d) be a complete metric space. Let W be a subset of X.
W is large if and only if
Player 0 has a winning strategy in the associated Banach-Mazur game.
[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games, Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159-163

Outline

(1) Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...
(4) Simple strategies in Banach-Mazur games

Banach-Mazur games

Definition

A Banach-Mazur game \mathcal{G} on a finite graph is a triplet $\left(G, v_{0}, W\right)$ where

- $G=(V, E)$ is a finite directed graph with no deadlock,
- $v_{0} \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given $\left(G, v_{0}, W\right)$, PI. 0 and PI. 1 play as follows:

Banach-Mazur games

Definition

A Banach-Mazur game \mathcal{G} on a finite graph is a triplet $\left(G, v_{0}, W\right)$ where

- $G=(V, E)$ is a finite directed graph with no deadlock,
- $v_{0} \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given (G, v_{0}, W), PI. 0 and PI. 1 play as follows:

- PI. 1 begins with choosing a finite path ρ_{1} starting in v_{0};

Banach-Mazur games

Definition

A Banach-Mazur game \mathcal{G} on a finite graph is a triplet $\left(G, v_{0}, W\right)$ where

- $G=(V, E)$ is a finite directed graph with no deadlock,
- $v_{0} \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given $\left(G, v_{0}, W\right), \mathrm{PI} .0$ and PI. 1 play as follows:

- PI. 1 begins with choosing a finite path ρ_{1} starting in v_{0};
- PI. 0 prolongs ρ_{1} by choosing another finite path ρ_{2};

Banach-Mazur games

Definition

A Banach-Mazur game \mathcal{G} on a finite graph is a triplet $\left(G, v_{0}, W\right)$ where

- $G=(V, E)$ is a finite directed graph with no deadlock,
- $v_{0} \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given (G, v_{0}, W), PI. 0 and PI. 1 play as follows:

- PI. 1 begins with choosing a finite path ρ_{1} starting in v_{0};
- PI. 0 prolongs ρ_{1} by choosing another finite path ρ_{2};
- PI. 1 prolongs $\rho_{1} \rho_{2}$ by choosing another finite path ρ_{3};

Banach-Mazur games

Definition

A Banach-Mazur game \mathcal{G} on a finite graph is a triplet $\left(G, v_{0}, W\right)$ where

- $G=(V, E)$ is a finite directed graph with no deadlock,
- $v_{0} \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given (G, v_{0}, W), PI. 0 and PI. 1 play as follows:

- PI. 1 begins with choosing a finite path ρ_{1} starting in v_{0};
- PI. 0 prolongs ρ_{1} by choosing another finite path ρ_{2};
- PI. 1 prolongs $\rho_{1} \rho_{2}$ by choosing another finite path ρ_{3};
- ...

Banach-Mazur games

Definition

A Banach-Mazur game \mathcal{G} on a finite graph is a triplet $\left(G, v_{0}, W\right)$ where

- $G=(V, E)$ is a finite directed graph with no deadlock,
- $v_{0} \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given (G, v_{0}, W), PI. 0 and PI. 1 play as follows:

- PI. 1 begins with choosing a finite path ρ_{1} starting in v_{0};
- PI. 0 prolongs ρ_{1} by choosing another finite path ρ_{2};
- PI. 1 prolongs $\rho_{1} \rho_{2}$ by choosing another finite path ρ_{3};
- ...

A play $\rho=\rho_{1} \rho_{2} \rho_{3} \cdots$ is won by PI. 0 wins iff $\rho \in W$.

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}}$

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}} \underbrace{B C}_{\rho_{2}}$

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}} \underbrace{B C}_{\rho_{2}} \underbrace{B C B}_{\rho_{3}}$

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}} \underbrace{B C}_{\rho_{2}} \underbrace{B C B}_{\rho_{3}} \underbrace{C B A}_{\rho_{4}}$

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}} \underbrace{B C}_{\rho_{2}} \underbrace{B C B}_{\rho_{3}} \underbrace{C B A}_{\rho_{4}} \underbrace{B A B C}_{\rho_{5}}$

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}} \underbrace{B C}_{\rho_{2}} \underbrace{B C B}_{\rho_{3}} \underbrace{C B A}_{\rho_{4}} \underbrace{B A B C}_{\rho_{5}} \underbrace{B A}_{\rho_{6}}$

Banach-Mazur game: an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI. 0: $f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

A play consistent with $f: \underbrace{B A A A}_{\rho_{1}} \underbrace{B C}_{\rho_{2}} \underbrace{B C B}_{\rho_{3}} \underbrace{C B A}_{\rho_{4}} \underbrace{B A B C}_{\rho_{5}} \underbrace{B A}_{\rho_{6}} \underbrace{B A B A}_{\rho_{7}} \cdots$

Banach-Mazur games and large sets

Let (V, E) be a graph, where V^{ω} equipped with the Cantor topology.
Theorem [Oxtoby57]
Let $\mathcal{G}=\left(G, v_{0}, W\right)$ be a Banach-Mazur game on a finite graph. PI. 0 has a winning strategy for \mathcal{G} if and only if W is large.
[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games, Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159-163

Cantor topology

Given V a finite set, let $\left(a_{i}\right)_{i \in \mathbb{N}}$ and $\left(b_{i}\right)_{i \in \mathbb{N}}$ be two elements of V^{ω}.

$$
d\left(\left(a_{i}\right)_{i \in \mathbb{N}},\left(b_{i}\right)_{i \in \mathbb{N}}\right)=2^{-k} \quad \text { where } \quad k=\min \left\{i \in \mathbb{N} \mid a_{i} \neq b_{i}\right\} .
$$

Banach－Mazur game：an example

$$
W=\{\rho \mid \rho \models \mathbf{G F} A \wedge \mathbf{G F} C\}
$$

Example of winning strategy for PI．0：$f(\rho)= \begin{cases}B C & \text { if } \rho \text { ends with } A \\ C B A & \text { if } \rho \text { ends with } B \\ B A & \text { if } \rho \text { ends with } C\end{cases}$

Thus W is a large set．

About determinacy (1)

Theorem [Oxtoby57]

Let $\mathcal{G}=\left(G, v_{0}, W\right)$ be a Banach-Mazur game on a finite graph.

- PI. 0 has a winning strategy for \mathcal{G} if and only if W is large.
- PI. 1 has a winning strategy for \mathcal{G} if and only if W is meagre in some basic open set.
[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games,
Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159-163

Corollary

Banach-Mazur games with Borel winning conditions are determined.
(1) Proof 1: Borel sets have the Baire property (i.e. their symmetric difference with some open set is meagre).
(O Proof 2: See Banach-Mazur games as "classical games played on graphs" and use the determinacy result from [Ma75].

About determinacy (2)

A Banach-Mazur game which is not determined

$$
W=\{\rho \mid\{i \in \mathbb{N} \mid \rho[i]=A\} \in \mathcal{U}\},
$$

where \mathcal{U} is a free ultrafilter.

Ultrafilter on \mathbb{N}

A set $\mathcal{U} \subseteq 2^{\mathbb{N}}$ is an ultrafilter on \mathbb{N} if and only if:

- $\emptyset \notin \mathcal{U}, \mathcal{U}$ is closed under intersection and supersets,
- for all $S \subseteq \mathbb{N}, S \in \mathcal{U}$ or $S^{c} \in \mathcal{U}$.
\mathcal{U} is free if it contains all co-finite sets (and thus no finite sets).

The axiom of choice guarantees existence of free ultrafilter.

Outline

(1) Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...
(4) Simple strategies in Banach-Mazur games

The historical origin of the Banach-Mazur game

In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)...

The historical origin of the Banach－Mazur game

In the 1930＇s and the 1940＇s，in Lwów（now Lviv in Ukraine）．．．
．．．there was a bar called The Scottish Café（now a bank）．．．

The historical origin of the Banach-Mazur game

In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)...
... there was a bar called The Scottish Café (now a bank)...
... in this bar, there was a book called The Scottish book...

The historical origin of the Banach-Mazur game

In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)...
... there was a bar called The Scottish Café (now a bank)...
... in this bar, there was a book called The Scottish book...

The Scottish book was a note book used by the mathematicians of the Lwów School of Mathematics to exchange problems meant to be solved.

The Lwów School of Mathematics

Zjazd Kół Matematyczno-Fizycznych (Lwów 1930). 1 - L. Chwistek, 2 - S. Banach, 3 - S. Loria, 4 - K. Kuratowski, 5 - S. Kaczmarz, 6 - J. P. Schauder, 7 - M. Stark, 8 - K. Borsuk, 9 - E. Marczewski, 10 - S. Ulam, 11 - A. Zawadzki, 12 - E. Otto, 13 - W. Zonn, 14 - M. Puchalik, $15-$ K. Szpunar

Problem 43 of the Scottish book

Problem 43 posed by S. Mazur
Definition of a game: Given a set $W \subseteq \mathbb{R}, \mathrm{PI} .0$ and PI. 1 alternates in choosing real intervals (starting with PI. 1) such that:

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots
$$

A play is won by PI. 0 if and only if $\cap_{k \geqslant 1} I_{k} \cap W \neq \emptyset$.
Conjecture: (Price a bottle of wine) W is large if and only if Player 0 has a winning strategy in the above game.

Problem 43 of the Scottish book

Problem 43 posed by S. Mazur
Definition of a game: Given a set $W \subseteq \mathbb{R}, \mathrm{PI} .0$ and PI. 1 alternates in choosing real intervals (starting with PI. 1) such that:

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots
$$

A play is won by PI. 0 if and only if $\cap_{k} \geqslant 1 I_{k} \cap W \neq \emptyset$.
Conjecture: (Price a bottle of wine) W is large if and only if Player 0 has a winning strategy in the above game.

August 4, 1935
S. Banach: "Mazur's conjecture" is true apparently, without a proof...

Let's play Banach-Mazur games!

- $W=\mathbb{R}$. Clearly \mathbb{R} is large. Thus PI. 0 has a winning strategy... Is any strategy of PI. 0 winning?

Let's play Banach-Mazur games!

- $W=\mathbb{R}$. Clearly \mathbb{R} is large. Thus PI. 0 has a winning strategy... Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid $\emptyset!$

Let's play Banach-Mazur games!

- $W=\mathbb{R}$. Clearly \mathbb{R} is large. Thus PI .0 has a winning strategy... Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid \emptyset !
- $W=[0,1]$. Clearly $[0,1]$ is not large.

Let's play Banach-Mazur games!

- $W=\mathbb{R}$. Clearly \mathbb{R} is large. Thus PI. 0 has a winning strategy... Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid $\emptyset!$
- $W=[0,1]$. Clearly $[0,1]$ is not large.

PI. 1 has a simple winning strategy: playing $(41,42)$ as first move.

Let's play Banach-Mazur games!

- $W=\mathbb{R}$. Clearly \mathbb{R} is large. Thus PI .0 has a winning strategy... Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid $\emptyset!$
- $W=[0,1]$. Clearly $[0,1]$ is not large.

PI. 1 has a simple winning strategy: playing $(41,42)$ as first move.

- $W=\mathbb{R} \backslash \mathbb{Q}$.

Let's play Banach-Mazur games!

- $W=\mathbb{R}$. Clearly \mathbb{R} is large. Thus PI. 0 has a winning strategy... Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid \emptyset !
- $W=[0,1]$. Clearly $[0,1]$ is not large.

PI. 1 has a simple winning strategy: playing $(41,42)$ as first move.

- $W=\mathbb{R} \backslash \mathbb{Q}$. Let $\left(q_{n}\right)_{n \geqslant 1}$ be an enumeration of \mathbb{Q}.

$$
I_{1} \supseteq I_{2} \supseteq I_{3} \supseteq I_{4} \supseteq \cdots \supseteq I_{k}=(a, b)
$$

Given $n_{a, b}:=\min \left\{n \geqslant 1: q_{n} \in(a, b)\right\}$, PI. 0 can play:

$$
\left(a^{\prime}, b^{\prime}\right) \text { such that } a<a^{\prime}<b^{\prime}<b \quad \text { and } \quad q_{n_{a}, b} \notin\left(a^{\prime}, b^{\prime}\right) .
$$

Outline

(1) Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...
(4) Simple strategies in Banach-Mazur games

A very nice result

A natural question
Given a model M and property φ, do we have that

$$
M \approx_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \approx_{T} \varphi \quad ?
$$

In other words, given a set W, do we have that

$$
\mathbb{P}(W)=1 \quad \Leftrightarrow \quad W \text { is large ? }
$$

A very nice result

A natural question
Given a model M and property φ, do we have that

$$
M \approx_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \approx_{T} \varphi \text { ? }
$$

In other words, given a set W, do we have that

$$
\mathbb{P}(W)=1 \quad \Leftrightarrow \quad W \text { is large ? }
$$

Theorem [VV06]

Given a finite system M and an ω-regular property φ, we have that

$$
M \approx_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \approx_{T} \varphi,
$$

for bounded Borel measures.
[VV06] D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006: 389-398

How to associate probability distribution with a graph ?

How to associate probability distribution with a graph ?

We consider it as a finite Markov chain with uniform distributions.

Remark

The result presented are independent of the probability distributions, as soon as every edge is assigned a positive probability.

Outline

(1) Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...
(4) Simple strategies in Banach-Mazur games

Disturbing phenomena

From [VV06], we have that given an ω-regular set W :

$$
W \text { is large if and only if } \mathbb{P}(W)=1,
$$

for bounded Borel measures.

Nevertheless, there exists large sets of probability $0 .$.

A large set of probability 0

$W=\left\{\left(w_{i} w_{i}^{R}\right)_{i}: w_{i} \in\{0,1,2\}^{*}\right\}$

PI. 0 has a winning strategy:

$$
f\left(\rho_{1} \rho_{2} \cdots \rho_{2 n+1}\right)=\rho_{2 n+1}^{R}
$$

$\rightsquigarrow W$ is large.

A large set of probability 0

$$
W=\left\{\left(w_{i} w_{i}^{R}\right)_{i}: w_{i} \in\{0,1,2\}^{*}\right\}
$$

PI. 0 has a winning strategy:

$$
\begin{array}{r}
f\left(\rho_{1} \rho_{2} \cdots \rho_{2 n+1}\right)=\rho_{2 n+1}^{R} \\
\rightsquigarrow W \text { is large. }
\end{array}
$$

$$
\begin{aligned}
\mathbb{P}(W) & \leqslant \sum_{n=1}^{\infty} \mathbb{P}(\{w \in W \mid \text { the first palindrome has length } 2 n\}) \\
& =\sum_{n=1}^{\infty} \mathbb{P}\left(\left\{w \in\{0,1,2\}^{\omega} \mid \text { the first palindrome has length } 2 n\right\}\right) \cdot \mathbb{P}(W) \\
& \leqslant \sum_{n=1}^{\infty} \frac{\mathbb{P}(W)}{3^{n}}=\frac{\mathbb{P}(W)}{2} \quad \rightsquigarrow \mathbb{P}(W)=0!!!
\end{aligned}
$$

There are large sets W such that $\mathbb{P}(W)=0 \ldots$
There are meagre sets W such that $\mathbb{P}(W)=1 \ldots$

These examples can be very simple (open or closed) sets...

Similarities between meagre sets and negligible sets

$$
\mathcal{M}=\{W \subseteq[0,1] \mid W \text { is meagre }\} \quad ; \quad \mathcal{N}=\{W \subseteq[0,1] \mid \mathbb{P}(W)=0\}
$$

Given $\mathcal{F}=\mathcal{M}$ or \mathcal{N},
(1) for any $A \in \mathcal{F}$, if $B \subset A$ then $B \in \mathcal{F}$;
(2) for any $\left(A_{n}\right)_{n \geqslant 1} \subset \mathcal{F}, \bigcup_{n \geqslant 1} A_{n} \in \mathcal{F}$;
(3) each countable set in $[0,1]$ belongs to \mathcal{F};
(3) if $A \in \mathcal{F}$, then $A^{c} \notin \mathcal{F}$;
(5) \mathcal{F} contains no interval.

Similarities between meagre sets and negligible sets

$$
\mathcal{M}=\{W \subseteq[0,1] \mid W \text { is meagre }\} \quad ; \mathcal{N}=\{W \subseteq[0,1] \mid \mathbb{P}(W)=0\}
$$

Given $\mathcal{F}=\mathcal{M}$ or \mathcal{N},
(1) for any $A \in \mathcal{F}$, if $B \subset A$ then $B \in \mathcal{F}$;
(2) for any $\left(A_{n}\right)_{n \geqslant 1} \subset \mathcal{F}, \bigcup_{n \geqslant 1} A_{n} \in \mathcal{F}$;
(0) each countable set in $[0,1]$ belongs to \mathcal{F};

- if $A \in \mathcal{F}$, then $A^{c} \notin \mathcal{F}$;
- \mathcal{F} contains no interval.

Theorem (Sierpinski, 1920)

Under the continuum hypothesis, there is a bijection $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $W \subset \mathbb{R}$ is meagre if and only if $f(W)$ has Lebesgue measure zero.

Similarities between meagre sets and negligible sets

$$
\mathcal{M}=\{W \subseteq[0,1] \mid W \text { is meagre }\} \quad ; \mathcal{N}=\{W \subseteq[0,1] \mid \mathbb{P}(W)=0\}
$$

Given $\mathcal{F}=\mathcal{M}$ or \mathcal{N},
(1) for any $A \in \mathcal{F}$, if $B \subset A$ then $B \in \mathcal{F}$;
(3) for any $\left(A_{n}\right)_{n \geqslant 1} \subset \mathcal{F}, \bigcup_{n \geqslant 1} A_{n} \in \mathcal{F}$;
(0) each countable set in $[0,1]$ belongs to \mathcal{F};

- if $A \in \mathcal{F}$, then $A^{c} \notin \mathcal{F}$;
- \mathcal{F} contains no interval.

Theorem (Sierpinski, 1920)

Under the continuum hypothesis, there is a bijection $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $W \subset \mathbb{R}$ is meagre if and only if $f(W)$ has Lebesgue measure zero.

But the concepts remains different !!!
[Oxtoby 1971] John C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, Vol. 2. Springer-Verlag, New York-Berlin, 1971

Why does it work for ω-regular sets?

Theorem [VV06]

Given a finite system M and an ω-regular property φ, we have that

$$
M \approx_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \approx_{T} \varphi,
$$

for bounded Borel measures.

The key ingredient to prove the above result is the following result:

Theorem [BGK03]

Given $\mathcal{G}=\left(G, v_{0}, W\right)$ where W is an ω-regular property, we have that
PI. 0 has a winning strategy for \mathcal{G} iff
PI. 0 has a positional winning strategies for \mathcal{G}.

If W is large and ω-regular, then $\mathbb{P}(W)=1$
Sketch of proof

By [BGK03], PI. 0 has a positional winning strategy f for W on M. In particular, there is $k \in \mathbb{N}$ such that for all finite prefixes $\pi:|f(\pi)| \leqslant k$.

If W is large and ω－regular，then $\mathbb{P}(W)=1$
Sketch of proof

By［BGK03］，PI． 0 has a positional winning strategy f for W on M ． In particular，there is $k \in \mathbb{N}$ such that for all finite prefixes $\pi:|f(\pi)| \leqslant k$ ．

We now see M as a finite Markov chain with uniform distribution． There is $p>0$ such that for all finite paths $\pi: \mathbb{P}(\pi \cdot f(\pi) \mid \pi) \geqslant p$ ．

If W is large and ω-regular, then $\mathbb{P}(W)=1$
Sketch of proof

By [BGK03], PI. 0 has a positional winning strategy f for W on M. In particular, there is $k \in \mathbb{N}$ such that for all finite prefixes $\pi:|f(\pi)| \leqslant k$.

We now see M as a finite Markov chain with uniform distribution. There is $p>0$ such that for all finite paths $\pi: \mathbb{P}(\pi \cdot f(\pi) \mid \pi) \geqslant p$.

By means of Borel-Cantelli Lemma, we thus have that
$\mathbb{P}(\{\rho \mid \underbrace{\rho \text { is a play consistent with } f \text { on infinitely many prefixes }}_{\rho \text { is consistent with } f}\})=1$

If W is large and ω-regular, then $\mathbb{P}(W)=1$
Sketch of proof

By [BGK03], PI. 0 has a positional winning strategy f for W on M. In particular, there is $k \in \mathbb{N}$ such that for all finite prefixes $\pi:|f(\pi)| \leqslant k$.

We now see M as a finite Markov chain with uniform distribution. There is $p>0$ such that for all finite paths $\pi: \mathbb{P}(\pi \cdot f(\pi) \mid \pi) \geqslant p$.

By means of Borel-Cantelli Lemma, we thus have that
$\mathbb{P}(\{\rho \mid \underbrace{\rho \text { is a play consistent with } f \text { on infinitely many prefixes }}_{\rho \text { is consistent with } f}\})=1$
As f is winning: $\{\rho \mid \rho$ is a play consistent with $f\} \subseteq W$, thus $\mathbb{P}(W)=1$.

If W is ω-regular and not large, then $\mathbb{P}(W)<1$
Sketch of proof

PI. 0 does not have a winning strategy in the BM game $G=\left(V, v_{0}, W\right)$. By determinacy, PI. 1 has a winning strategy f_{1} in G (as W is ω-regular).

If W is ω－regular and not large，then $\mathbb{P}(W)<1$
Sketch of proof

PI． 0 does not have a winning strategy in the BM game $G=\left(V, v_{0}, W\right)$ ． By determinacy，PI． 1 has a winning strategy f_{1} in G（as W is ω－regular）．

Let π_{1} be the first move of PI． 1 given by f_{1} ．We have that $\mathbb{P}\left(\pi_{1}\right)>0$ ． Notice that f_{1} is a winning strategy for PI． 0 in $G^{\prime}=\left(V, \pi_{1}, W^{c}\right)$ ．

If W is ω-regular and not large, then $\mathbb{P}(W)<1$
Sketch of proof

PI. 0 does not have a winning strategy in the BM game $G=\left(V, v_{0}, W\right)$. By determinacy, PI. 1 has a winning strategy f_{1} in G (as W is ω-regular).

Let π_{1} be the first move of PI. 1 given by f_{1}. We have that $\mathbb{P}\left(\pi_{1}\right)>0$. Notice that f_{1} is a winning strategy for PI. 0 in $G^{\prime}=\left(V, \pi_{1}, W^{c}\right)$.

By the previous implication, we have that

$$
\mathbb{P}\left(W^{c} \mid \pi_{1}\right)=1
$$

And thus

$$
\mathbb{P}(W)<1
$$

Outline of the talk

(1) Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
(2) My first steps with Banach-Mazur games
- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games
(3) Back to the fair model-checking problem
- A very nice result
- Life is not so easy...

4 Simple strategies in Banach-Mazur games

Simple strategies for Banach－Mazur games

Given $\mathcal{G}=\left(G, v_{0}, W\right)$ ，let f be a strategy for PI． 0 ．

$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

Simple strategies for Banach-Mazur games

 Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.

Simple strategies for Banach-Mazur games

Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .

$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.
- finite memory if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and a finite memory.

Simple strategies for Banach-Mazur games

 Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.
- finite memory if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and a finite memory.
- b-bounded if $\left|\rho_{2 n+2}\right| \leqslant b$.

Simple strategies for Banach-Mazur games

 Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.
- finite memory if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and a finite memory.
- b-bounded if $\left|\rho_{2 n+2}\right| \leqslant b$.
- bounded if there is $b \geqslant 1$ such that f is b-bounded.

Simple strategies for Banach-Mazur games

 Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.
- finite memory if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and a finite memory.
- b-bounded if $\left|\rho_{2 n+2}\right| \leqslant b$.
- bounded if there is $b \geqslant 1$ such that f is b-bounded.
- move-blind (decomposition invariant) if it does not depend of the moves of the players, but only of the past seen as a single finite word.

Simple strategies for Banach-Mazur games

 Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.
- finite memory if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and a finite memory.
- b-bounded if $\left|\rho_{2 n+2}\right| \leqslant b$.
- bounded if there is $b \geqslant 1$ such that f is b-bounded.
- move-blind (decomposition invariant) if it does not depend of the moves of the players, but only of the past seen as a single finite word.
- move-counting if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and the number of moves already played.

Simple strategies for Banach-Mazur games

 Given $\mathcal{G}=\left(G, v_{0}, W\right)$, let f be a strategy for PI. 0 .$$
f(\underbrace{\rho_{1} \rho_{2} \cdots \rho_{2 n+1}}_{\text {What is observed }})=\underbrace{\rho_{2 n+2}}_{\text {What is played }}
$$

We say that f is

- positional if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$.
- finite memory if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and a finite memory.
- b-bounded if $\left|\rho_{2 n+2}\right| \leqslant b$.
- bounded if there is $b \geqslant 1$ such that f is b-bounded.
- move-blind (decomposition invariant) if it does not depend of the moves of the players, but only of the past seen as a single finite word.
- move-counting if it only depends on $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and the number of moves already played.
- length-counting if it only depends on the $\operatorname{Last}\left(\rho_{2 n+1}\right)$ and the length of the prefix already played.

About Simple strategies for PI. 0 (1)

Theorem [BGK03]
Given $\mathcal{G}=\left(G, v_{0}, W\right)$ on a finite graph, we have that
PI. 0 has a positional winning strategy for \mathcal{G}
iff
PI. 0 has a finite-memory winning strategies for \mathcal{G}.

[^0]
About Simple strategies for PI. 0 (1)

Theorem [BGK03]

Given $\mathcal{G}=\left(G, v_{0}, W\right)$ on a finite graph, we have that

PI. 0 has a positional winning strategy for \mathcal{G}

 iffPI. 0 has a finite-memory winning strategies for \mathcal{G}.
[BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of Path Games. LPAR 2003: 229-243

Theorem [G08]
Given $\mathcal{G}=\left(G, v_{0}, W\right)$ on a finite graph, we have that
PI. 0 has a winning strategy for \mathcal{G} iff
PI. 0 has a move-blind winning strategies for \mathcal{G}.

About Simple strategies for PI. 0 (2)

Simple observation

Given $\mathcal{G}=\left(G, v_{0}, W\right)$ on a finite graph, we have that
If PI. 0 has a positional winning strategy for \mathcal{G}, then
PI. 0 has a bounded winning strategies for \mathcal{G}.

Theorem [BM13,BHM15]

Given $\mathcal{G}=\left(G, v_{0}, W\right)$ on a finite graph, we have that
PI. 0 has a length-counting winning strategy for \mathcal{G}
iff
PI. 0 has a winning strategies for \mathcal{G}.
[BM13] T. Brihaye, Q. Menet: Fairly Correct Systems: Beyond omega-regularity. GandALF 2013: 21-34
[BHM15] T. Brihaye, A. Haddad, Q. Menet: Simple strategies for Banach-Mazur games and sets of probability 1, accepted in Information and Computation.

Building a length-counting winning strategy

Sketch of proof

Let f be a winning strat., we have to build $h: V \times \mathbb{N} \rightarrow V^{*}$.
Assume that $\left\{\pi_{1}, \pi_{2}, \pi_{3}\right\}$ is the set finite set of paths of length n ending in v, then we define:

$$
h(v, n)=f\left(\pi_{1}\right) f\left(\pi_{2} f\left(\pi_{1}\right)\right) f\left(\pi_{3} f\left(\pi_{1}\right) f\left(\pi_{2} f\left(\pi_{1}\right)\right)\right)
$$

If ρ is consistent with h, then ρ is consistent with f (which is winning).
$\rightsquigarrow \quad h$ is a length-counting winning strategy for PI. 0.

Simple strategies for PI. 0 on finite graphs

Winning positional strategy

Combining results from [BGK03], [VV06], [G08], [GL12], [BHM15].

Relations with the sets of probability one

Proposition

Let $\mathcal{G}=\left(G, v_{0}, W\right)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.
If PI. 0 has $\left\{\begin{array}{l}\text { a move-counting } \\ \text { a bounded }\end{array} \quad\right.$ winning strategy for \mathcal{G}, then $\mathbb{P}(W)=1$.
There exist large open set of probability 1 without a positional/ bounded/ move-counting winning strategy.

$$
W=\left\{\left(w_{k}\right)_{k \geqslant 1} \in\{0,1\}^{\omega} \mid \exists n>1 w_{n!}=1\right\}
$$

Relations with the sets of probability one

Proposition

Let $\mathcal{G}=\left(G, v_{0}, W\right)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.
If PI. 0 has $\left\{\begin{array}{l}\text { a move-counting } \\ \text { a bounded }\end{array} \quad\right.$ winning strategy for \mathcal{G}, then $\mathbb{P}(W)=1$.
There exist large open set of probability 1 without a positional/ bounded/ move-counting winning strategy.

$$
W=\left\{\left(w_{k}\right)_{k \geqslant 1} \in\{0,1\}^{\omega} \mid \exists n>1 w_{n!}=1\right\}
$$

We look for a new concept of "simple strategy"

Back to the example

$$
W=\left\{\left(w_{k}\right)_{k \geqslant 1} \in\{0,1\}^{\omega} \mid \exists n>1 \quad w_{n!}=1\right\}
$$

Clearly PI. 0 has a winning strategy, thus W is large.

Moreover, we have that $\mathbb{P}(W)=1$. Indeed, for $n>1$:

$$
A_{n}:=\left\{\left(w_{k}\right)_{k \geqslant 1} \in\{0,1\}^{\omega} \mid w_{n!}=1 \text { and } w_{m!}=0 \text { for any } 1<m<n\right\}
$$

we thus have:

$$
W=\bigcup_{n>1} A_{n} \quad \text { and } \quad \mathbb{P}\left(A_{n}\right)=\frac{1}{2^{n-1}} \quad \rightsquigarrow \quad \mathbb{P}(W)=1
$$

Back to the example

$$
W=\left\{\left(w_{k}\right)_{k \geqslant 1} \in\{0,1\}^{\omega} \mid \exists n>1 \quad w_{n!}=1\right\}
$$

Let f be a b-bounded strategy for PI. 0 .
A winning strategy for PI. 1 (against f) consists in

- starting by playing $(b+1)$! zeros,
- at each step, completing the sequence by 0 's to reach the next k !
$\rightsquigarrow \quad$ there is no winning bounded (resp. positional) strategy for PI. 0 .

Back to the example

$$
W=\left\{\left(w_{k}\right)_{k \geqslant 1} \in\{0,1\}^{\omega} \mid \exists n>1 \quad w_{n!}=1\right\}
$$

Let f be a b-bounded strategy for PI. 0 .
A winning strategy for PI. 1 (against f) consists in

- starting by playing $(b+1)$! zeros,
- at each step, completing the sequence by 0 's to reach the next k !
$\rightsquigarrow \quad$ there is no winning bounded (resp. positional) strategy for PI. 0 .

One can also prove the non existence of winning move-counting strategy

Banach-Mazur game

A play consists in concatenating finite paths,

Banach-Mazur game

A play consists in concatenating finite paths, or equivalently in building a decreasing sequence of open sets.

Another simple strategy

Given $\mathcal{G}=\left(G, v_{0}, W\right)$ ，a strategy for PI． 0 can be seen as $f: \mathcal{O}^{*} \rightarrow \mathcal{O}$ ．

$$
f(\underbrace{O_{1} O_{2} \cdots O_{2 n+1}}_{\text {What is observed }})=\underbrace{O_{2 n+2}}_{\text {What is played }},
$$

where $O_{1} \supseteq O_{2} \supseteq \cdots \supseteq O_{2 n+1} \supseteq O_{2 n+2}$ are open sets．

Another simple strategy

Given $\mathcal{G}=\left(G, v_{0}, W\right)$, a strategy for PI. 0 can be seen as $f: \mathcal{O}^{*} \rightarrow \mathcal{O}$.

$$
f(\underbrace{O_{1} O_{2} \cdots O_{2 n+1}}_{\text {What is observed }})=\underbrace{O_{2 n+2}}_{\text {What is played }},
$$

where $O_{1} \supseteq O_{2} \supseteq \cdots \supseteq O_{2 n+1} \supseteq O_{2 n+2}$ are open sets.

Assuming that G is equipped with a probability distribution on edges.
The notion of α-strategy
Given $0<\alpha<1$, we say that f is an α-strategy if and only if

$$
\mathbb{P}\left(O_{2 n+2} \mid O_{2 n+1}\right) \geqslant \alpha
$$

Results on α-strategies

Theorem [BM13,BHM15]

Let $\mathcal{G}=\left(G, v_{0}, W\right)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.

If PI. 0 has a winning α-strategy for some $\alpha>0$, then $\mathbb{P}(W)=1$.

Theorem [BM13,BHM15]

When W is a countable intersection of open sets, the following assertions are equivalent:
(1) $P(W)=1$,
(2) PI. 0 has a winning α-strategy for some $\alpha>0$,
(3) PI. 0 has a winning α-strategy for all $0<\alpha<1$.
[BM13] T. Brihaye, Q. Menet: Fairly Correct Systems: Beyond omega-regularity. GandALF 2013: 21-34
[BHM15] T. Brihaye, A. Haddad, Q. Menet: Simple strategies for Banach-Mazur games and sets of probability 1, accepted in Information and Computation.

Summary

Winning positional strategy

Winning finite memory strategy

Winning bounded strategy

Winning move-counting strategy

Winning α-strategy $\underset{\text { of open sets }}{\stackrel{\text { Countable intersection }}{\longrightarrow}}$ Probability 1
\downarrow
Winning length-counting strategy
\uparrow
Winning move-blind strategy

Winning strategy

Abour fair model-checking of timed automata (1)

Theorem [BBB+14]

Given a timed automaton \mathcal{A} and an ω-regular property φ, we have that

$$
\mathcal{A} \approx_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad \mathcal{A} \approx_{T} \varphi,
$$

in the following cases:

- if φ is a safety property.
- if \mathcal{A} is a one-clock timed automaton.
- if \mathcal{A} is a reactive timed automaton.
[BBB +14$]$ Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Groesser, Marcin Jurdzinski: Stochastic Timed Automata. Logical Methods in Computer Science 10(4) (2014)

Abour fair model-checking of timed automata (2)

The previous theorem is false in general:

Let φ be the formula $\mathbf{G F} \ell_{2}$, we have that

$$
\mathcal{A} \approx_{T} \varphi \quad \text { but } \quad \mathcal{A} \not \mathscr{E}_{\mathbb{P}} \varphi
$$

Let y_{n} be the value of y at the $n^{\text {th }}$ arrival in ℓ_{0}

$$
y_{n}<1 \quad \text { and } \quad y_{n}<y_{n+1}
$$

Conclusion

Why should you fall in love with Banach-Mazur games?

- They are fun!
- They enjoy nice properties (positional strategies suffice for ω-regular winning conditions).
- They help understanding topological concepts.
- The study of their winning strategy helps in understanding links between topological bigness and probabilistic bigness.

Thank you!!!

[^0]: [BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of Path Games. LPAR 2003: 229-243

