## Around Banach-Mazur games

Thomas Brihaye

University of Mons - Belgium

AutoMathA 2015 Leipzig, May 6 - 9, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



The goal of this talk is to present:

#### my personal encounter with Banach-Mazur games.

< □ > < (□ > < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ > ) < (□ >

They talk will not reflect an historical perspective<sup>1</sup>!

<sup>&</sup>lt;sup>1</sup>except from my personal point of view.



The goal of this talk is to present:

my personal encounter with Banach-Mazur games.

They talk will not reflect an historical perspective<sup>1</sup>!

I would like to address the following questions:

- Where, when and how did I discover Banach-Mazur games ?
- Why should you fall in love with them ? (as I already did)

<sup>&</sup>lt;sup>1</sup>except from my personal point of view.

# Outline



Where, when and how did I discover Banach-Mazur games ?

◆□ > ◆舂 > ◆産 > ◆産 > .

2

- Model-checking
- My first encounter with Banach-Mazur games...
- My first steps with Banach-Mazur games
  - Banach-Mazur games played on a finite graph
  - Historical origin of Banach-Mazur games

## 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### Simple strategies in Banach-Mazur games

# Computer programming and software bugs

Computer programming is a difficult task which is error-prone

#### Definition

A software bug is an error, a failure in a computer program or system that induces an incorrect result.

**Bug example:** In August 2005, a Malaysian Airlines Boeing 777 that was on autopilot suddenly ascended 3,000 feet.

No need to argue that software without bugs are highly desirable...

A possible solution to automatically check correctness: model-checking

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

## The model-checking picture



?

# **Specification** *arrive safely,...*

## The model-checking picture



# The model-checking picture



◆□ → ◆□ → ◆三 → ◆三 → ● ◆ ●

# Model-checking - A 'concrete' example

A faulty coffee/tea machine





Every coffee request provides a coffee

イロト イヨト イヨト イヨト

æ

# Model-checking - A 'concrete' example

A faulty coffee/tea machine





Every coffee request provides a coffee



 $\mathcal{A}_{Syst}$ 

 $\varphi_c \equiv \mathbf{G}(\mathbf{r}_c \Rightarrow \mathbf{X}\mathbf{c})$ 

イロト イヨト イヨト イヨト

æ

Model-checking - An important result

÷

How to check 'efficiently' whether  $\mathcal{A}_{Syst} \models \varphi_c$  ?

Theorem [VW86] Every (LTL) formula can be translated into an equivalent automaton.

[VW86] M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 1986: 332-344.

$$\mathcal{A}_{Syst} \models \varphi_c \quad \text{iff} \quad \mathcal{L}(\mathcal{A}_{Syst}) \subseteq \mathcal{L}(\mathcal{A}_{\varphi_c})$$

 $\mathsf{iff} \quad \mathcal{L}(\mathcal{A}_{Syst}) \cap \mathcal{L}^{c}(\mathcal{A}_{\varphi_{c}}) = \emptyset$ 

# Outline



Where, when and how did I discover Banach-Mazur games ?

◆□ > ◆舂 > ◆産 > ◆産 > .

2

- Model-checking
- My first encounter with Banach-Mazur games...
- My first steps with Banach-Mazur games
  - Banach-Mazur games played on a finite graph
  - Historical origin of Banach-Mazur games

## 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### Simple strategies in Banach-Mazur games

• I had just obtained my PhD (model-checking timed systems).

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...
- We were at LICS in Seattle where:
  - ► The paper [VW86] obtained the **Test-of-time award**!

M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...
- We were at LICS in Seattle where:
  - ► The paper [VW86] obtained the **Test-of-time award**!

M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86

► The paper [VV06] about fair model-checking was presented.

D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006

- I had just obtained my PhD (model-checking timed systems).
- I was about to start a postdoc with Patricia Bouyer at LSV, and we were brainstorming together...
- We were at LICS in Seattle where:
  - The paper [VW86] obtained the **Test-of-time award**!

M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86

► The paper [VV06] about **fair model-checking** was presented.

D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006

With Patricia, we decided to work on fair model-checking for TA

◆□> ◆圖> ◆注> ◆注> 注

## The coin example

Some limits of the classical model-checking approach

#### **Classical Model-Checking**

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is empty.



 $M_{\text{coin}} \not\models \mathbf{F}$  head ;  $M_{\text{coin}} \not\models \mathbf{GF}$  tails

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

Maybe the most natural answer: via probability

$$M \models_{\mathbb{P}} \varphi \quad iff \quad \mathbb{P}(\{\rho \text{ of } M \mid \rho \not\models \varphi\}) = 0$$
$$iff \quad \mathbb{P}(\{\rho \text{ of } M \mid \rho \models \varphi\}) = 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Alternative answer: via topology

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

Alternative answer: via topology

What is a "very big" (or a "very small") set in topology ?

#### Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

Alternative answer: via topology

What is a "very big" (or a "very small") set in topology ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Could dense sets be the "very big" sets ?

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

Alternative answer: via topology

What is a "very big" (or a "very small") set in topology ?

Could dense sets be the "very big" sets ?

... in  $(\mathbb{R}, |\cdot|)$ , we have that  $\mathbb{Q}$  is dense and  $\mathbb{R} \setminus \mathbb{Q}$  is dense...

#### Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

Alternative answer: via topology

What is a "very big" (or a "very small") set in topology ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Could dense sets be the "very big" sets ? No

## Fair Model-Checking

Given a model M and a property  $\varphi$ , decide whether:

 $M \models \varphi$ , i.e. { $\rho$  execution of  $M \mid \rho \not\models \varphi$ } is "very small" i.e. { $\rho$  execution of  $M \mid \rho \models \varphi$ } is "very big"

How to formalise the fair model-checking ?

Alternative answer: via topology

What is a "very big" (or a "very small") set in topology ?

Could dense sets be the "very big" sets ? No

"Very small" is meagre, i.e. countable union of nowhere dense sets. "Very big" is large, i.e. complements of meagre sets.

## Few words on meagre sets and large sets

Definitions

Let  $(X, \tau)$  be a topological space. A set  $W \subseteq X$  is:

nowhere dense if the closure of W has empty interior.
 Examples in (ℝ, | · |): {a} with a ∈ ℝ, ℤ, the Cantor set,...

#### Remark

Nowhere dense sets are not stable under countable union:  $\mathbb{Q} = \cup_{q \in \mathbb{Q}} \{q\}$ 

(日) (四) (문) (문) (문)

## Few words on meagre sets and large sets

#### Definitions

Let  $(X, \tau)$  be a topological space. A set  $W \subseteq X$  is:

- nowhere dense if the closure of W has empty interior.
  Examples in (ℝ, | · |): {a} with a ∈ ℝ, ℤ, the Cantor set,...
- meagre if it is a countable union of nowhere dense sets.

#### Remark

Nowhere dense sets are not stable under countable union:  $\mathbb{Q} = \cup_{q \in \mathbb{Q}} \{q\}$ 

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

#### Remark

Meagre sets are also known as sets of first category.

# Few words on meagre sets and large sets

## Definitions

Let  $(X, \tau)$  be a topological space. A set  $W \subseteq X$  is:

- nowhere dense if the closure of W has empty interior.
  Examples in (ℝ, | · |): {a} with a ∈ ℝ, ℤ, the Cantor set,...
- meagre if it is a countable union of nowhere dense sets.
- large if  $W^c$  is meagre.

#### Remark

Nowhere dense sets are not stable under countable union:  $\mathbb{Q} = \cup_{q \in \mathbb{Q}} \{q\}$ 

#### Remark

Meagre sets are also known as sets of first category.

#### Remark

Large sets are also known as residual sets.

## My first encounter with Banach-Mazur game ...

Fair Model-Checking problem - topological version

Given a model M and a property  $\varphi$ , decide (algorithmically) whether:

 $\{\rho \text{ exec. of } M \mid \rho \models \varphi\}$  is large.

In other words, we need to check whether

 $\{\rho \text{ exec. of } M \mid \rho \not\models \varphi\}$  is a countable union of nowhere dense sets.

# My first encounter with Banach-Mazur game...

Fair Model-Checking problem - topological version

Given a model M and a property  $\varphi$ , decide (algorithmically) whether:

 $\{\rho \text{ exec. of } M \mid \rho \models \varphi\}$  is large.

In other words, we need to check whether

 $\{\rho \text{ exec. of } M \mid \rho \not\models \varphi\}$  is a countable union of nowhere dense sets.

It does not look like an easy task...

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

My first encounter with Banach-Mazur game... Fair Model-Checking problem - topological version Given a model M and a property  $\varphi$ , decide (algorithmically) whether:

 $\{\rho \text{ exec. of } M \mid \rho \models \varphi\}$  is large.

In other words, we need to check whether

 $\{\rho \text{ exec. of } M \mid \rho \not\models \varphi\}$  is a countable union of nowhere dense sets.

It does not look like an easy task...

Theorem [Oxtoby57]

Let (X, d) be a complete metric space. Let W be a subset of X.

W is large if and only if

Player 0 has a winning strategy in the associated Banach-Mazur game.

< □ > < @ > < 注 > < 注 > ... 注

[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games, Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159–163

# Outline

Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...

#### Description My first steps with Banach-Mazur games

- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games

#### 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### Simple strategies in Banach-Mazur games

# Banach-Mazur games

## Definition

A Banach-Mazur game  $\mathcal{G}$  on a finite graph is a triplet  $(G, v_0, W)$  where

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$  is the initial state,
- $W \subset V^{\omega}$ .

Given  $(G, v_0, W)$ , Pl. 0 and Pl. 1 play as follows:

# Banach-Mazur games

## Definition

A Banach-Mazur game  $\mathcal{G}$  on a finite graph is a triplet  $(G, v_0, W)$  where

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$  is the initial state,
- $W \subset V^{\omega}$ .

Given  $(G, v_0, W)$ , Pl. 0 and Pl. 1 play as follows:

• Pl. 1 begins with choosing a finite path  $\rho_1$  starting in  $v_0$ ;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
#### Definition

A Banach-Mazur game  ${\mathcal G}$  on a finite graph is a triplet  $({\mathcal G}, v_0, {\mathcal W})$  where

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$  is the initial state,
- $W \subset V^{\omega}$ .

Given  $(G, v_0, W)$ , Pl. 0 and Pl. 1 play as follows:

• Pl. 1 begins with choosing a finite path  $\rho_1$  starting in  $v_0$ ;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Pl. 0 prolongs  $\rho_1$  by choosing another finite path  $\rho_2$ ;

#### Definition

A Banach-Mazur game  $\mathcal{G}$  on a finite graph is a triplet  $(G, v_0, W)$  where

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$  is the initial state,
- $W \subset V^{\omega}$ .

Given  $(G, v_0, W)$ , Pl. 0 and Pl. 1 play as follows:

- Pl. 1 begins with choosing a finite path  $\rho_1$  starting in  $v_0$ ;
- Pl. 0 prolongs  $\rho_1$  by choosing another finite path  $\rho_2$ ;
- Pl. 1 prolongs  $\rho_1 \rho_2$  by choosing another finite path  $\rho_3$ ;

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

#### Definition

A Banach-Mazur game  ${\mathcal G}$  on a finite graph is a triplet  $({\mathcal G}, v_0, {\mathcal W})$  where

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$  is the initial state,
- $W \subset V^{\omega}$ .

Given  $(G, v_0, W)$ , Pl. 0 and Pl. 1 play as follows:

- Pl. 1 begins with choosing a finite path  $\rho_1$  starting in  $v_0$ ;
- Pl. 0 prolongs  $\rho_1$  by choosing another finite path  $\rho_2$ ;
- Pl. 1 prolongs  $\rho_1 \rho_2$  by choosing another finite path  $\rho_3$ ;

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

...

#### Definition

A Banach-Mazur game  $\mathcal{G}$  on a finite graph is a triplet  $(G, v_0, W)$  where

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$  is the initial state,
- $W \subset V^{\omega}$ .

Given  $(G, v_0, W)$ , Pl. 0 and Pl. 1 play as follows:

- Pl. 1 begins with choosing a finite path  $\rho_1$  starting in  $v_0$ ;
- Pl. 0 prolongs  $\rho_1$  by choosing another finite path  $\rho_2$ ;
- Pl. 1 prolongs  $\rho_1 \rho_2$  by choosing another finite path  $\rho_3$ ;

...

A play  $\rho = \rho_1 \rho_2 \rho_3 \cdots$  is won by Pl. 0 wins iff  $\rho \in W$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

< □ > < (四 > < (回 > ) < (回 > ) < (回 > ) ) [三

Example of winning strategy for Pl. 0:  $f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$ 

A play consistent with  $f: \underline{BAAA}$ 



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

Example of winning strategy for Pl. 0:  $f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$ 

A play consistent with f: BAAA BC

(4日) (四) (日) (日) (日) (日)



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

(日) (國) (필) (필) (필) 표

Example of winning strategy for Pl. 0:  $f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$ 

A play consistent with  $f: \underbrace{BAAA}_{p_1} \underbrace{BC}_{p_2} \underbrace{BCB}_{p_3}$ 



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Example of winning strategy for Pl. 0: 
$$f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$$

A play consistent with f:  $\underbrace{BAAA}_{\rho_1} \underbrace{BC}_{\rho_2} \underbrace{BCB}_{\rho_3} \underbrace{CBA}_{\rho_4}$ 



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

Example of winning strategy for Pl. 0: 
$$f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example of winning strategy for Pl. 0: 
$$f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$$

A play consistent with f:  $BAAA \\ \rho_1 \\ \rho_2 \\ \rho_3 \\ \rho_4 \\ \rho_4 \\ \rho_5 \\ \rho_6 \\ P_6 \\ P$ 



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

Example of winning strategy for Pl. 0: 
$$f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$$

A play consistent with  $f: \underbrace{BAAA}_{\rho_1} \underbrace{BC}_{\rho_2} \underbrace{BCB}_{\rho_3} \underbrace{CBA}_{\rho_4} \underbrace{BABC}_{\rho_5} \underbrace{BA}_{\rho_6} \underbrace{BABA}_{\rho_7} \cdots$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Banach-Mazur games and large sets

Let (V, E) be a graph, where  $V^{\omega}$  equipped with the Cantor topology.

#### Theorem [Oxtoby57]

Let  $\mathcal{G} = (G, v_0, W)$  be a Banach-Mazur game on a finite graph.

Pl. 0 has a winning strategy for G if and only if W is large.

[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games, Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159–163

#### Cantor topology

Given V a finite set, let  $(a_i)_{i\in\mathbb{N}}$  and  $(b_i)_{i\in\mathbb{N}}$  be two elements of  $V^{\omega}$ .

 $d((a_i)_{i\in\mathbb{N}}, (b_i)_{i\in\mathbb{N}}) = 2^{-k}$  where  $k = \min\{i\in\mathbb{N} \mid a_i \neq b_i\}.$ 



$$W = \{ \rho \mid \rho \models \mathsf{GF} \ A \land \mathsf{GF} \ C \}$$

æ

Example of winning strategy for Pl. 0:  $f(\rho) = \begin{cases} BC & \text{if } \rho \text{ ends with } A \\ CBA & \text{if } \rho \text{ ends with } B \\ BA & \text{if } \rho \text{ ends with } C \end{cases}$ 

Thus W is a large set.

# About determinacy (1)

#### Theorem [Oxtoby57]

Let  $\mathcal{G} = (\mathcal{G}, v_0, W)$  be a Banach-Mazur game on a finite graph.

- Pl. 0 has a winning strategy for  $\mathcal{G}$  if and only if W is large.
- Pl. 1 has a winning strategy for  $\mathcal{G}$  if and only if W is meagre in some basic open set.

[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games, Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159–163

#### Corollary

Banach-Mazur games with Borel winning conditions are determined.

- **Proof 1:** Borel sets have the Baire property (i.e. their symmetric difference with some open set is meagre).
- Proof 2: See Banach-Mazur games as "classical games played on graphs" and use the determinacy result from [Ma75].

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

[Ma75] Donald A. Martin, Borel determinacy. Annals of Mathematics, 1975, Second series 102 (2): 363371

# About determinacy (2)

A Banach-Mazur game which is not determined



$$W = \left\{ \rho \mid \{i \in \mathbb{N} \mid \rho[i] = A\} \in \mathcal{U} \right\},\$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

where  $\ensuremath{\mathcal{U}}$  is a free ultrafilter.

#### Ultrafilter on $\mathbb{N}$

A set  $\mathcal{U} \subseteq 2^{\mathbb{N}}$  is an ultrafilter on  $\mathbb{N}$  if and only if:

- $\emptyset \notin \mathcal{U}, \mathcal{U}$  is closed under intersection and supersets,
- for all  $S \subseteq \mathbb{N}$ ,  $S \in \mathcal{U}$  or  $S^c \in \mathcal{U}$ .

 $\mathcal{U}$  is **free** if it contains all co-finite sets (and thus no finite sets).

The axiom of choice guarantees existence of free ultrafilter.

## Outline

Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...

#### Description My first steps with Banach-Mazur games

- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games

#### 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### Simple strategies in Banach-Mazur games

In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)...



In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)... ... there was a bar called *The Scottish Café* (now a bank)...





・ロト ・部ト ・ヨト ・ヨト

In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)... ... there was a bar called *The Scottish Café* (now a bank)... ... in this bar, there was a book called *The Scottish book*...







(日) (월) (분) (분)

In the 1930's and the 1940's, in Lwów (now Lviv in Ukraine)... ... there was a bar called *The Scottish Café* (now a bank)... ... in this bar, there was a book called *The Scottish book*...



The Scottish book was a note book used by the mathematicians of the *Lwów School of Mathematics* to exchange problems meant to be solved.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

#### The Lwów School of Mathematics



Zjazd Kół Matematyczno-Fizycznych (Lwów 1930). 1 — L. Chwistek, 2 — S. Banach,
3 — S. Loria, 4 — K. Kuratowski, 5 — S. Kaczmarz, 6 — J. P. Schauder, 7 — M. Stark,
8 — K. Borsuk, 9 — E. Marczewski, 10 — S. Ulam, 11 — A. Zawadzki, 12 — E. Otto,
13 — W. Zonn, 14 — M. Puchalik, 15 — K. Szpunar

### Problem 43 of the Scottish book

#### Problem 43 posed by S. Mazur

**Definition of a game:** Given a set  $W \subseteq \mathbb{R}$ , Pl. 0 and Pl. 1 alternates in choosing real intervals (starting with Pl. 1) such that:

 $l_1 \supseteq l_2 \supseteq l_3 \supseteq l_4 \supseteq \cdots$ 

A play is won by Pl. 0 if and only if  $\bigcap_{k \ge 1} I_k \cap W \neq \emptyset$ .

**Conjecture:** (Price a bottle of wine) W is large if and only if Player 0 has a winning strategy in the above game.



### Problem 43 of the Scottish book

#### Problem 43 posed by S. Mazur

**Definition of a game:** Given a set  $W \subseteq \mathbb{R}$ , Pl. 0 and Pl. 1 alternates in choosing real intervals (starting with Pl. 1) such that:

 $l_1 \supseteq l_2 \supseteq l_3 \supseteq l_4 \supseteq \cdots$ 

A play is won by Pl. 0 if and only if  $\bigcap_{k \ge 1} I_k \cap W \neq \emptyset$ .

**Conjecture:** (Price a bottle of wine) W is large if and only if Player 0 has a winning strategy in the above game.





August 4, 1935

S. Banach: "Mazur's conjecture" is true

apparently, without a proof...

W = ℝ. Clearly ℝ is large. Thus Pl. 0 has a winning strategy...
 Is any strategy of Pl. 0 winning?

•  $W = \mathbb{R}$ . Clearly  $\mathbb{R}$  is large. Thus Pl. 0 has a winning strategy...

Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid  $\emptyset$ !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- $W = \mathbb{R}$ . Clearly  $\mathbb{R}$  is large. Thus Pl. 0 has a winning strategy...
  - Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid  $\emptyset$ !

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• W = [0, 1]. Clearly [0, 1] is not large.

- $W = \mathbb{R}$ . Clearly  $\mathbb{R}$  is large. Thus Pl. 0 has a winning strategy...
  - Is any strategy of Pl. 0 winning? No, Pl. 0 must be careful to avoid  $\emptyset$ !
- W = [0, 1]. Clearly [0, 1] is not large.

Pl. 1 has a simple winning strategy: playing (41, 42) as first move.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $W = \mathbb{R}$ . Clearly  $\mathbb{R}$  is large. Thus Pl. 0 has a winning strategy...
  - Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid  $\emptyset !$
- W = [0, 1]. Clearly [0, 1] is not large.

Pl. 1 has a simple winning strategy: playing (41, 42) as first move.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

•  $W = \mathbb{R} \setminus \mathbb{Q}$ .

- $W = \mathbb{R}$ . Clearly  $\mathbb{R}$  is large. Thus Pl. 0 has a winning strategy...
  - Is any strategy of PI. 0 winning? No, PI. 0 must be careful to avoid  $\emptyset$ !
- W = [0,1]. Clearly [0,1] is not large.
  Pl. 1 has a simple winning strategy: playing (41,42) as first move.
- $W = \mathbb{R} \setminus \mathbb{Q}$ . Let  $(q_n)_{n \ge 1}$  be an enumeration of  $\mathbb{Q}$ .

 $I_1 \supseteq I_2 \supseteq I_3 \supseteq I_4 \supseteq \cdots \supseteq I_k = (a, b)$ 

Given  $n_{a,b} := \min\{n \ge 1 : q_n \in (a, b)\}$ , Pl. 0 can play:

 $(a',b') \quad \text{such that} \quad a < a' < b' < b \quad \text{and} \quad q_{n_{a,b}} \notin (a',b').$ 

#### ◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Outline



Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
- My first steps with Banach-Mazur games
  - Banach-Mazur games played on a finite graph
  - Historical origin of Banach-Mazur games

#### 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### Simple strategies in Banach-Mazur games

### A very nice result

#### A natural question

Given a model M and property  $\varphi$ , do we have that

$$M \models_{\mathbb{P}} \varphi \Leftrightarrow M \models_{\mathcal{T}} \varphi$$
 ?

In other words, given a set W, do we have that

$$\mathbb{P}(W) = 1 \quad \Leftrightarrow \quad W \text{ is large } ?$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### A very nice result

#### A natural question

Given a model M and property  $\varphi$ , do we have that

$$M \models_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \models_{\mathcal{T}} \varphi$$
 ?

In other words, given a set W, do we have that

$$\mathbb{P}(W) = 1 \quad \Leftrightarrow \quad W ext{ is large } ?$$

#### Theorem [VV06]

Given a finite system M and an  $\omega$ -regular property  $\varphi$ , we have that

$$M \models_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \models_{\mathcal{T}} \varphi,$$

for bounded Borel measures.

[VV06] D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006: 389-398

### How to associate probability distribution with a graph ?





### How to associate probability distribution with a graph ?



We consider it as a finite Markov chain with uniform distributions.

#### Remark

The result presented are independent of the probability distributions, as soon as every edge is assigned a positive probability.

## Outline



Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...
- My first steps with Banach-Mazur games
  - Banach-Mazur games played on a finite graph
  - Historical origin of Banach-Mazur games

#### 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### Simple strategies in Banach-Mazur games

### Disturbing phenomena

From [VV06], we have that given an  $\omega$ -regular set W:

W is large if and only if  $\mathbb{P}(W) = 1$ , for bounded Borel measures.

Nevertheless, there exists large sets of probability 0...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで
# A large set of probability 0



$$W = \{(w_i w_i^R)_i : w_i \in \{0, 1, 2\}^*\}$$

Pl. 0 has a winning strategy:

 $f(\rho_1 \rho_2 \cdots \rho_{2n+1}) = \rho_{2n+1}^R$ \$\sim W\$ is large.

<ロト <四ト <注入 <注下 <注下 = 1

# A large set of probability 0



$$W = \{(w_i w_i^R)_i : w_i \in \{0, 1, 2\}^*\}$$

Pl. 0 has a winning strategy:  $f(\rho_1 \rho_2 \cdots \rho_{2n+1}) = \rho_{2n+1}^R$   $\rightsquigarrow W \text{ is large.}$ 

◆□→ ◆□→ ◆注→ ◆注→ 注

There are **large** sets W such that  $\mathbb{P}(W) = 0...$ 

There are **meagre** sets W such that  $\mathbb{P}(W) = 1...$ 

These examples can be very simple (open or closed) sets...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

### Similarities between meagre sets and negligible sets

 $\mathcal{M} = \{ \mathcal{W} \subseteq [0,1] \mid \mathcal{W} \text{ is meagre} \} \quad ; \quad \mathcal{N} = \{ \mathcal{W} \subseteq [0,1] \mid \mathbb{P}(\mathcal{W}) = 0 \}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Given  $\mathcal{F} = \mathcal{M}$  or  $\mathcal{N}$ ,

- **1** for any  $A \in \mathcal{F}$ , if  $B \subset A$  then  $B \in \mathcal{F}$ ;
- (a) for any  $(A_n)_{n \ge 1} \subset \mathcal{F}$ ,  $\bigcup_{n \ge 1} A_n \in \mathcal{F}$ ;
- each countable set in [0,1] belongs to  $\mathcal{F}$ ;
- if  $A \in \mathcal{F}$ , then  $A^c \notin \mathcal{F}$ ;
- $\bigcirc$   $\mathcal{F}$  contains no interval.

# Similarities between meagre sets and negligible sets

 $\mathcal{M} = \{ \mathcal{W} \subseteq [0,1] \mid \mathcal{W} \text{ is meagre} \} \quad ; \quad \mathcal{N} = \{ \mathcal{W} \subseteq [0,1] \mid \mathbb{P}(\mathcal{W}) = 0 \}$ 

Given  $\mathcal{F} = \mathcal{M}$  or  $\mathcal{N}$ ,

- **1** for any  $A \in \mathcal{F}$ , if  $B \subset A$  then  $B \in \mathcal{F}$ ;
- (a) for any  $(A_n)_{n \ge 1} \subset \mathcal{F}$ ,  $\bigcup_{n \ge 1} A_n \in \mathcal{F}$ ;
- $\bullet$  each countable set in [0,1] belongs to  $\mathcal{F}$ ;
- if  $A \in \mathcal{F}$ , then  $A^c \notin \mathcal{F}$ ;
- $\bigcirc$   $\mathcal{F}$  contains no interval.

#### Theorem (Sierpinski, 1920)

Under the continuum hypothesis, there is a bijection  $f : \mathbb{R} \to \mathbb{R}$  such that  $W \subset \mathbb{R}$  is meagre if and only if f(W) has Lebesgue measure zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

## Similarities between meagre sets and negligible sets

 $\mathcal{M} = \{ \mathcal{W} \subseteq [0,1] \mid \mathcal{W} \text{ is meagre} \} \quad ; \quad \mathcal{N} = \{ \mathcal{W} \subseteq [0,1] \mid \mathbb{P}(\mathcal{W}) = 0 \}$ 

Given  $\mathcal{F} = \mathcal{M}$  or  $\mathcal{N}$ ,

- **1** for any  $A \in \mathcal{F}$ , if  $B \subset A$  then  $B \in \mathcal{F}$ ;
- (a) for any  $(A_n)_{n \ge 1} \subset \mathcal{F}$ ,  $\bigcup_{n \ge 1} A_n \in \mathcal{F}$ ;
- each countable set in [0,1] belongs to  $\mathcal{F}$ ;
- if  $A \in \mathcal{F}$ , then  $A^c \notin \mathcal{F}$ ;
- $\bigcirc$   $\mathcal{F}$  contains no interval.

#### Theorem (Sierpinski, 1920)

Under the continuum hypothesis, there is a bijection  $f : \mathbb{R} \to \mathbb{R}$  such that  $W \subset \mathbb{R}$  is meagre if and only if f(W) has Lebesgue measure zero.

#### But the concepts remains different !!!

[Oxtoby 1971] John C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces. Graduate Texts in Mathematics, Vol. 2. Springer-Verlag, New York-Berlin, 1971

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

# Why does it work for $\omega$ -regular sets?

### Theorem [VV06]

Given a finite system M and an  $\omega\text{-regular}$  property  $\varphi,$  we have that

$$M \models_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \models_{\mathcal{T}} \varphi,$$

for bounded Borel measures.

The key ingredient to prove the above result is the following result:

Theorem [BGK03] Given  $\mathcal{G} = (G, v_0, W)$  where W is an  $\omega$ -regular property, we have that Pl. 0 has a winning strategy for  $\mathcal{G}$ iff Pl. 0 has a **positional** winning strategies for  $\mathcal{G}$ .

[BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of Path Games. LPAR 2003: 229-243

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

By [BGK03], Pl. 0 has a **positional winning** strategy f for W on M. In particular, there is  $k \in \mathbb{N}$  such that for all finite prefixes  $\pi$ :  $|f(\pi)| \leq k$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

By [BGK03], Pl. 0 has a **positional winning** strategy f for W on M. In particular, there is  $k \in \mathbb{N}$  such that for all finite prefixes  $\pi$ :  $|f(\pi)| \leq k$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We now see *M* as a finite Markov chain with uniform distribution. There is p > 0 such that for all finite paths  $\pi$ :  $\mathbb{P}(\pi \cdot f(\pi)|\pi) \ge p$ .

By [BGK03], Pl. 0 has a **positional winning** strategy f for W on M. In particular, there is  $k \in \mathbb{N}$  such that for all finite prefixes  $\pi$ :  $|f(\pi)| \leq k$ .

We now see M as a finite Markov chain with uniform distribution. There is p > 0 such that for all finite paths  $\pi$ :  $\mathbb{P}(\pi \cdot f(\pi)|\pi) \ge p$ .

By means of Borel-Cantelli Lemma, we thus have that

 $\mathbb{P}(\{\rho \mid \rho \text{ is a play consistent with } f \text{ on infinitely many prefixes}\}) = 1$ 

 $\rho$  is consistent with f

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

By [BGK03], Pl. 0 has a **positional winning** strategy f for W on M. In particular, there is  $k \in \mathbb{N}$  such that for all finite prefixes  $\pi$ :  $|f(\pi)| \leq k$ .

We now see M as a finite Markov chain with uniform distribution. There is p > 0 such that for all finite paths  $\pi$ :  $\mathbb{P}(\pi \cdot f(\pi)|\pi) \ge p$ .

By means of Borel-Cantelli Lemma, we thus have that

 $\mathbb{P}(\{\rho \mid \rho \text{ is a play consistent with } f \text{ on infinitely many prefixes}\}) = 1$   $\rho \text{ is consistent with } f$ 

As f is winning:  $\{\rho \mid \rho \text{ is a play consistent with } f\} \subseteq W$ , thus  $\mathbb{P}(W) = 1$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

If W is  $\omega$ -regular and not large, then  $\mathbb{P}(W) < 1$ Sketch of proof

Pl. 0 does not have a winning strategy in the BM game  $G = (V, v_0, W)$ . By **determinacy**, Pl. 1 has a winning strategy  $f_1$  in G (as W is  $\omega$ -regular).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

If W is  $\omega$ -regular and not large, then  $\mathbb{P}(W) < 1$ Sketch of proof

Pl. 0 does not have a winning strategy in the BM game  $G = (V, v_0, W)$ . By **determinacy**, Pl. 1 has a winning strategy  $f_1$  in G (as W is  $\omega$ -regular).

Let  $\pi_1$  be the first move of Pl. 1 given by  $f_1$ . We have that  $\mathbb{P}(\pi_1) > 0$ . Notice that  $f_1$  is a winning strategy for Pl. 0 in  $G' = (V, \pi_1, W^c)$ . If W is  $\omega$ -regular and not large, then  $\mathbb{P}(W) < 1$ Sketch of proof

Pl. 0 does not have a winning strategy in the BM game  $G = (V, v_0, W)$ . By **determinacy**, Pl. 1 has a winning strategy  $f_1$  in G (as W is  $\omega$ -regular).

Let  $\pi_1$  be the first move of Pl. 1 given by  $f_1$ . We have that  $\mathbb{P}(\pi_1) > 0$ . Notice that  $f_1$  is a winning strategy for Pl. 0 in  $G' = (V, \pi_1, W^c)$ .

By the previous implication, we have that

$$\mathbb{P}(W^c \mid \pi_1) = 1.$$

And thus

 $\mathbb{P}(W) < 1.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# Outline of the talk

## Where, when and how did I discover Banach-Mazur games ?

- Model-checking
- My first encounter with Banach-Mazur games...

#### My first steps with Banach-Mazur games

- Banach-Mazur games played on a finite graph
- Historical origin of Banach-Mazur games

#### 3 Back to the fair model-checking problem

- A very nice result
- Life is not so easy...

#### 4 Simple strategies in Banach-Mazur games

 $f(\underbrace{\rho_1\rho_2\cdots\rho_{2n+1}}) =$ 

What is observed

What is played

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We say that f is

$$f(\underbrace{\rho_1\rho_2\cdots\rho_{2n+1}}) =$$

What is observed



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

We say that f is

• **positional** if it only depends on  $Last(\rho_{2n+1})$ .

$$f(\underbrace{\rho_1 \rho_2 \cdots \rho_{2n+1}}_{\text{What is observed}}) = \underbrace{\rho_{2n+2}}_{\text{What is played}}$$

We say that f is

- **positional** if it only depends on Last( $\rho_{2n+1}$ ).
- **finite memory** if it only depends on Last( $\rho_{2n+1}$ ) and a finite memory.

02n+2



 $\underbrace{\rho_{2n+2}}_{\text{What is played}}$ 

We say that f is

- **positional** if it only depends on  $Last(\rho_{2n+1})$ .
- finite memory if it only depends on Last( $\rho_{2n+1}$ ) and a finite memory.
- **b-bounded** if  $|\rho_{2n+2}| \leq b$ .



We say that *f* is

- **positional** if it only depends on  $Last(\rho_{2n+1})$ .
- finite memory if it only depends on  $Last(\rho_{2n+1})$  and a finite memory.
- **b-bounded** if  $|\rho_{2n+2}| \leq b$ .
- **bounded** if there is  $b \ge 1$  such that f is b-bounded.



We say that f is

- **positional** if it only depends on  $Last(\rho_{2n+1})$ .
- finite memory if it only depends on Last( $\rho_{2n+1}$ ) and a finite memory.
- **b-bounded** if  $|\rho_{2n+2}| \leq b$ .
- **bounded** if there is  $b \ge 1$  such that f is b-bounded.
- move-blind (decomposition invariant) if it does not depend of the moves of the players, but only of the past seen as a single finite word.



We say that f is

- **positional** if it only depends on  $Last(\rho_{2n+1})$ .
- finite memory if it only depends on Last( $\rho_{2n+1}$ ) and a finite memory.
- **b-bounded** if  $|\rho_{2n+2}| \leq b$ .
- **bounded** if there is  $b \ge 1$  such that f is b-bounded.
- move-blind (decomposition invariant) if it does not depend of the moves of the players, but only of the past seen as a single finite word.
- move-counting if it only depends on Last(ρ<sub>2n+1</sub>) and the number of moves already played.



We say that f is

- **positional** if it only depends on  $Last(\rho_{2n+1})$ .
- finite memory if it only depends on Last( $\rho_{2n+1}$ ) and a finite memory.
- **b-bounded** if  $|\rho_{2n+2}| \leq b$ .
- **bounded** if there is  $b \ge 1$  such that f is b-bounded.
- move-blind (decomposition invariant) if it does not depend of the moves of the players, but only of the past seen as a single finite word.
- move-counting if it only depends on Last(ρ<sub>2n+1</sub>) and the number of moves already played.
- length-counting if it only depends on the Last(ρ<sub>2n+1</sub>) and the length of the prefix already played.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

# About Simple strategies for PI. 0 (1)

### Theorem [BGK03]

Given  $\mathcal{G} = (G, v_0, W)$  on a finite graph, we have that

#### Pl. 0 has a **positional** winning strategy for Giff Pl. 0 has a **finite-memory** winning strategies for G.

[BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of Path Games. LPAR 2003: 229-243

# About Simple strategies for PI. 0 (1)

### Theorem [BGK03]

Given  $\mathcal{G} = (G, v_0, W)$  on a finite graph, we have that

#### Pl. 0 has a **positional** winning strategy for Giff Pl. 0 has a **finite-memory** winning strategies for G.

[BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of Path Games. LPAR 2003: 229-243

Theorem [G08] Given  $\mathcal{G} = (G, v_0, W)$  on a finite graph, we have that PI. 0 has a winning strategy for  $\mathcal{G}$ iff PI. 0 has a **move-blind** winning strategies for  $\mathcal{G}$ .

[BGK03] E. Grdel, Banach-Mazur Games on Graphs. FSTTCS 2008: 364-382

# About Simple strategies for Pl. 0 (2)

#### Simple observation

Given  $\mathcal{G} = (G, v_0, W)$  on a finite graph, we have that

If PI. 0 has a **positional** winning strategy for  $\mathcal{G}$ , then PI. 0 has a **bounded** winning strategies for  $\mathcal{G}$ .

### Theorem [BM13,BHM15]

Given  $\mathcal{G} = (G, v_0, W)$  on a finite graph, we have that

### Pl. 0 has a **length-counting** winning strategy for $\mathcal{G}$ iff Pl. 0 has a winning strategies for $\mathcal{G}$ .

[BM13] T. Brihaye, Q. Menet: Fairly Correct Systems: Beyond omega-regularity. GandALF 2013: 21-34

[BHM15] T. Brihaye, A. Haddad, Q. Menet: Simple strategies for Banach-Mazur games and sets of probability 1, accepted in Information and Computation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

### Building a length-counting winning strategy Sketch of proof

Let f be a winning strat., we have to build  $h: V \times \mathbb{N} \to V^*$ .

Assume that  $\{\pi_1, \pi_2, \pi_3\}$  is the set **finite set of** paths of length *n* ending in *v*, then we define:

$$h(v, n) = f(\pi_1) f(\pi_2 f(\pi_1)) f(\pi_3 f(\pi_1) f(\pi_2 f(\pi_1)))$$



If  $\rho$  is consistent with *h*, then  $\rho$  is consistent with *f* (which is winning).

 $\rightarrow$  *h* is a length-counting winning strategy for PI. 0.



Combining results from [BGK03], [VV06], [G08], [GL12], [BHM15].

< 3 b

크

# Relations with the sets of probability one

#### Proposition

Let  $\mathcal{G} = (G, v_0, W)$  be a Banach-Mazur game on a finite graph and  $\mathbb{P}$  a reasonable probability measure.

If Pl. 0 has  $\begin{cases} a \text{ move-counting} \\ a \text{ bounded} \end{cases} \text{ winning strategy for } \mathcal{G}, \text{ then } \mathbb{P}(W) = 1. \end{cases}$ 

There exist large **open** set of probability 1 without a positional/ bounded/ move-counting winning strategy.

$$W = \{ (w_k)_{k \ge 1} \in \{0,1\}^{\omega} \mid \exists n > 1 \ w_{n!} = 1 \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Relations with the sets of probability one

#### Proposition

Let  $\mathcal{G} = (G, v_0, W)$  be a Banach-Mazur game on a finite graph and  $\mathbb{P}$  a reasonable probability measure.

If Pl. 0 has  $\begin{cases} a \text{ move-counting} \\ a \text{ bounded} \end{cases}$  winning strategy for  $\mathcal{G}$ , then  $\mathbb{P}(W) = 1$ .

There exist large **open** set of probability 1 without a positional/ bounded/ move-counting winning strategy.

$$W = \{ (w_k)_{k \ge 1} \in \{0,1\}^{\omega} \mid \exists n > 1 \ w_{n!} = 1 \}$$

We look for a new concept of "simple strategy"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

### Back to the example



Clearly PI. 0 has a winning strategy, thus W is large.

Moreover, we have that  $\mathbb{P}(W) = 1$ . Indeed, for n > 1:

 $A_n := \{ (w_k)_{k \ge 1} \in \{0,1\}^{\omega} \mid w_{n!} = 1 \text{ and } w_{m!} = 0 \text{ for any } 1 < m < n \},$ we thus have:

$$W = \bigcup_{n>1}^{\cdot} A_n$$
 and  $\mathbb{P}(A_n) = \frac{1}{2^{n-1}} \longrightarrow \mathbb{P}(W) = 1.$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

## Back to the example



Let f be a b-bounded strategy for Pl. 0.

A winning strategy for Pl. 1 (against f) consists in

- starting by playing (b+1)! zeros,
- at each step, completing the sequence by 0's to reach the next k!
- $\rightarrow$  there is no winning bounded (resp. positional) strategy for Pl. 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Back to the example



Let f be a b-bounded strategy for Pl. 0.

A winning strategy for PI. 1 (against f) consists in

- starting by playing (b+1)! zeros,
- at each step, completing the sequence by 0's to reach the next k!
- $\rightarrow$  there is no winning bounded (resp. positional) strategy for PI. 0.

One can also prove the non existence of winning move-counting strategy

# Banach-Mazur game

A play consists in concatenating finite paths,



# Banach-Mazur game

A play consists in concatenating finite paths,

or equivalently in building a decreasing sequence of **open sets**.



### Another simple strategy

Given  $\mathcal{G} = (G, v_0, W)$ , a strategy for Pl. 0 can be seen as  $f : \mathcal{O}^* \to \mathcal{O}$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


### Another simple strategy

Given  $\mathcal{G} = (G, v_0, W)$ , a strategy for Pl. 0 can be seen as  $f : \mathcal{O}^* \to \mathcal{O}$ .



Assuming that G is equipped with a probability distribution on edges.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

The notion of  $\alpha$ -strategy Given  $0 < \alpha < 1$ , we say that f is an  $\alpha$ -strategy if and only if  $\mathbb{P}(O_{2n+2}|O_{2n+1}) \ge \alpha$ .

## Results on $\alpha$ -strategies

#### Theorem [BM13,BHM15]

Let  $\mathcal{G} = (G, v_0, W)$  be a Banach-Mazur game on a finite graph and  $\mathbb{P}$  a reasonable probability measure.

If Pl. 0 has a winning  $\alpha$ -strategy for some  $\alpha > 0$ , then  $\mathbb{P}(W) = 1$ .

#### Theorem [BM13,BHM15]

When W is a **countable intersection of open sets**, the following assertions are equivalent:

**1** 
$$P(W) = 1$$
,

- **2** Pl. 0 has a winning  $\alpha$ -strategy for some  $\alpha > 0$ ,
- **③** Pl. 0 has a winning  $\alpha$ -strategy for all  $0 < \alpha < 1$ .

[BM13] T. Brihaye, Q. Menet: Fairly Correct Systems: Beyond omega-regularity. GandALF 2013: 21-34

[BHM15] T. Brihaye, A. Haddad, Q. Menet: Simple strategies for Banach-Mazur games and sets of probability 1, accepted in Information and Computation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ● ●

# Summary



# Abour fair model-checking of timed automata (1)

#### Theorem [BBB+14]

Given a timed automaton  $\mathcal{A}$  and an  $\omega$ -regular property  $\varphi$ , we have that

$$\mathcal{A} \models_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad \mathcal{A} \models_{\mathcal{T}} \varphi,$$

in the following cases:

- if  $\varphi$  is a safety property.
- if A is a one-clock timed automaton.
- if A is a reactive timed automaton.

[BBB+14] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Groesser, Marcin Jurdzinski: Stochastic Timed Automata. Logical Methods in Computer Science 10(4) (2014)

< □ > < @ > < 注 > < 注 > ... 注

## Abour fair model-checking of timed automata (2)

The previous theorem is false in general:



Let  $\varphi$  be the formula **GF**  $\ell_2$ , we have that

 $\mathcal{A} \models_{\mathcal{T}} \varphi \quad \text{but} \quad \mathcal{A} \not\models_{\mathbb{P}} \varphi.$ 

Let  $y_n$  be the value of y at the  $n^{\text{th}}$  arrival in  $\ell_0$ 

 $y_n < 1$  and  $y_n < y_{n+1}$ 

## Conclusion

• ...

Why should you fall in love with Banach-Mazur games?

- They are fun!
- They enjoy nice properties (positional strategies suffice for  $\omega$ -regular winning conditions).
- They help understanding topological concepts.
- The study of their winning strategy helps in understanding links between topological bigness and probabilistic bigness.

Thank you!!!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで