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The goal of this talk is to present:

my personal encounter with Banach-Mazur games.

They talk will not reflect an historical perspective1!

I would like to address the following questions:

Where, when and how did I discover Banach-Mazur games ?

Why should you fall in love with them ? (as I already did)

1except from my personal point of view.
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Computer programming and software bugs

Computer programming is a difficult task which is error-prone

Definition

A software bug is an error, a failure in a computer program or system that
induces an incorrect result.

Bug example: In August 2005, a Malaysian Airlines Boeing 777 that was
on autopilot suddenly ascended 3,000 feet.

No need to argue that software without bugs are highly desirable...

A possible solution to automatically check correctness:
model-checking



The model-checking picture

Real system
plane,...

Specification
arrive safely,...|=?

Abstract model
automaton,...

Logic formula
FO, LTL,...|=?

Algorithm

YES/NO
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Model-checking - An important result

How to check ‘efficiently’ whether ASyst |= ϕc ?

Theorem [VW86]

Every (LTL) formula can be translated into an equivalent automaton.

[VW86] M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 1986: 332-344.

ASyst |= ϕc iff L(ASyst) ⊆ L(Aϕc )

iff L(ASyst) ∩ Lc(Aϕc ) = ∅
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Summer 2006

I had just obtained my PhD (model-checking timed systems).

I was about to start a postdoc with Patricia Bouyer at LSV, and we
were brainstorming together...

We were at LICS in Seattle where:

I The paper [VW86] obtained the Test-of-time award!

M. Y. Vardi, P. Wolper: An Automata-Theoretic Approach to Automatic Program Verification. LICS 86

I The paper [VV06] about fair model-checking was presented.

D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006

With Patricia, we decided to work on fair model-checking for TA
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The coin example
Some limits of the classical model-checking approach

Classical Model-Checking

Given a model M and a property ϕ, decide whether:

M |= ϕ, i.e. {ρ execution of M | ρ 6|= ϕ} is empty.

v0

vhvt

Mcoin 6|= F head ; Mcoin 6|= GF tails



Fair model-checking

Fair Model-Checking

Given a model M and a property ϕ, decide whether:

M |≈ ϕ, i.e. {ρ execution of M | ρ 6|= ϕ} is “very small”

i.e. {ρ execution of M | ρ |= ϕ} is “very big”

How to formalise the fair model-checking ?

Maybe the most natural answer: via probability

M |≈P ϕ iff P({ρ of M | ρ 6|= ϕ}) = 0

iff P({ρ of M | ρ |= ϕ}) = 1
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Fair Model-Checking
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... in (R, | · |), we have that Q is dense and R \Q is dense...
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Fair model-checking

Fair Model-Checking

Given a model M and a property ϕ, decide whether:

M |≈ ϕ, i.e. {ρ execution of M | ρ 6|= ϕ} is “very small”

i.e. {ρ execution of M | ρ |= ϕ} is “very big”

How to formalise the fair model-checking ?

Alternative answer: via topology

What is a “very big” (or a “very small”) set in topology ?

Could dense sets be the “very big” sets ? No

“Very small” is meagre, i.e. countable union of nowhere dense sets.

“Very big” is large, i.e. complements of meagre sets.



Few words on meagre sets and large sets

Definitions

Let (X , τ) be a topological space. A set W ⊆ X is:

nowhere dense if the closure of W has empty interior.
Examples in (R, | · |): {a} with a ∈ R, Z, the Cantor set,...

meagre if it is a countable union of nowhere dense sets.

large if W c is meagre.

Remark

Nowhere dense sets are not stable under countable union: Q = ∪q∈Q{q}

Remark

Meagre sets are also known as sets of first category.

Remark

Large sets are also known as residual sets.
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My first encounter with Banach-Mazur game...

Fair Model-Checking problem - topological version

Given a model M and a property ϕ, decide (algorithmically) whether:

{ρ exec. of M | ρ |= ϕ} is large.

In other words, we need to check whether

{ρ exec. of M | ρ 6|= ϕ} is a countable union of nowhere dense sets.

It does not look like an easy task...

Theorem [Oxtoby57]

Let (X , d) be a complete metric space. Let W be a subset of X .

W is large if and only if
Player 0 has a winning strategy in the associated Banach-Mazur game.

[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games,

Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159–163
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Banach-Mazur games

Definition

A Banach-Mazur game G on a finite graph is a triplet (G , v0,W ) where

G = (V ,E ) is a finite directed graph with no deadlock,

v0 ∈ V is the initial state,

W ⊂ V ω.

Given (G , v0,W ), Pl. 0 and Pl. 1 play as follows:

Pl. 1 begins with choosing a finite path ρ1 starting in v0;

Pl. 0 prolongs ρ1 by choosing another finite path ρ2;

Pl. 1 prolongs ρ1ρ2 by choosing another finite path ρ3;

...

A play ρ = ρ1ρ2ρ3 · · · is won by Pl. 0 wins iff ρ ∈W .
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Banach-Mazur game: an example

BA C W = { ρ | ρ |= GF A ∧ GF C}

Example of winning strategy for Pl. 0: f (ρ) =


BC if ρ ends with A

CBA if ρ ends with B

BA if ρ ends with C

A play consistent with f : BAAA︸ ︷︷ ︸
ρ1

BC︸︷︷︸
ρ2

BCB︸︷︷︸
ρ3

CBA︸︷︷︸
ρ4

BABC︸ ︷︷ ︸
ρ5

BA︸︷︷︸
ρ6

BABA︸ ︷︷ ︸
ρ7

· · ·
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Banach-Mazur games and large sets

Let (V ,E ) be a graph, where V ω equipped with the Cantor topology.

Theorem [Oxtoby57]

Let G = (G , v0,W ) be a Banach-Mazur game on a finite graph.

Pl. 0 has a winning strategy for G if and only if W is large.

[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games,

Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159–163

Cantor topology

Given V a finite set, let (ai )i∈N and (bi )i∈N be two elements of V ω.

d((ai )i∈N, (bi )i∈N) = 2−k where k = min{i ∈ N | ai 6= bi}.



Banach-Mazur game: an example

BA C W = { ρ | ρ |= GF A ∧ GF C}

Example of winning strategy for Pl. 0: f (ρ) =


BC if ρ ends with A

CBA if ρ ends with B

BA if ρ ends with C

Thus W is a large set.



About determinacy (1)

Theorem [Oxtoby57]

Let G = (G , v0,W ) be a Banach-Mazur game on a finite graph.

Pl. 0 has a winning strategy for G if and only if W is large.

Pl. 1 has a winning strategy for G if and only if W is meagre in some
basic open set.

[Oxtoby57] J.C. Oxtoby, The BanachMazur game and Banach category theorem, Contribution to the Theory of Games,

Volume III, Annals of Mathematical Studies 39 (1957), Princeton, 159–163

Corollary

Banach-Mazur games with Borel winning conditions are determined.

1 Proof 1: Borel sets have the Baire property (i.e. their symmetric
difference with some open set is meagre).

2 Proof 2: See Banach-Mazur games as “classical games played on
graphs” and use the determinacy result from [Ma75].

[Ma75] Donald A. Martin, Borel determinacy. Annals of Mathematics, 1975, Second series 102 (2): 363371



About determinacy (2)

A Banach-Mazur game which is not determined

BA
W =

{
ρ | {i ∈ N | ρ[i ] = A} ∈ U

}
,

where U is a free ultrafilter.

Ultrafilter on N
A set U ⊆ 2N is an ultrafilter on N if and only if:

∅ 6∈ U , U is closed under intersection and supersets,

for all S ⊆ N, S ∈ U or Sc ∈ U .

U is free if it contains all co-finite sets (and thus no finite sets).

The axiom of choice guarantees existence of free ultrafilter.
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The historical origin of the Banach-Mazur game

In the 1930’s and the 1940’s, in Lwów (now Lviv in Ukraine)...

... there was a bar called The Scottish Café (now a bank)...

... in this bar, there was a book called The Scottish book...

The Scottish book was a note book used by the mathematicians of the
Lwów School of Mathematics to exchange problems meant to be solved.
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The Lwów School of Mathematics



Problem 43 of the Scottish book

Problem 43 posed by S. Mazur

Definition of a game: Given a set W ⊆ R, Pl. 0 and Pl. 1 alternates in
choosing real intervals (starting with Pl. 1) such that:

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·
A play is won by Pl. 0 if and only if ∩k>1Ik ∩W 6= ∅.

Conjecture: (Price a bottle of wine) W is large if and only if Player 0 has
a winning strategy in the above game.

August 4, 1935

S. Banach: “Mazur’s conjecture” is true

apparently, without a proof...
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Let’s play Banach-Mazur games!

W = R. Clearly R is large. Thus Pl. 0 has a winning strategy...

Is any strategy of Pl. 0 winning?

No, Pl. 0 must be careful to avoid ∅!

W = [0, 1]. Clearly [0, 1] is not large.

Pl. 1 has a simple winning strategy: playing (41, 42) as first move.

W = R \Q. Let (qn)n>1 be an enumeration of Q.

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · · ⊇ Ik = (a, b)

Given na,b := min{n > 1 : qn ∈ (a, b)}, Pl. 0 can play:

(a′, b′) such that a < a′ < b′ < b and qna,b /∈ (a′, b′).
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A very nice result

A natural question

Given a model M and property ϕ, do we have that

M |≈P ϕ ⇔ M |≈T ϕ ?

In other words, given a set W , do we have that

P(W ) = 1 ⇔ W is large ?

Theorem [VV06]

Given a finite system M and an ω-regular property ϕ, we have that

M |≈P ϕ ⇔ M |≈T ϕ,

for bounded Borel measures.

[VV06] D. Varacca, H. Völzer: Temporal Logics and Model Checking for Fairly Correct Systems. LICS 2006: 389-398
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How to associate probability distribution with a graph ?

v0

vhvt

Remark

The result presented are independent of the probability distributions, as
soon as every edge is assigned a positive probability.
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We consider it as a finite Markov chain with uniform distributions.

Remark

The result presented are independent of the probability distributions, as
soon as every edge is assigned a positive probability.
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Disturbing phenomena

From [VV06], we have that given an ω-regular set W :

W is large if and only if P(W ) = 1,

for bounded Borel measures.

Nevertheless, there exists large sets of probability 0...



A large set of probability 0

0 1

2

W = {(wiw
R
i )i : wi ∈ {0, 1, 2}∗}

Pl. 0 has a winning strategy:

f (ρ1ρ2 · · · ρ2n+1) = ρR2n+1

 W is large.
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W = {(wiw
R
i )i : wi ∈ {0, 1, 2}∗}

Pl. 0 has a winning strategy:

f (ρ1ρ2 · · · ρ2n+1) = ρR2n+1

 W is large.

P(W ) 6
∞∑
n=1

P({w ∈W | the first palindrome has length 2n})

=
∞∑
n=1

P({w ∈ {0, 1, 2}ω | the first palindrome has length 2n}) · P(W )

6
∞∑
n=1

P(W )

3n
=

P(W )

2
 P(W ) = 0 !!!



There are large sets W such that P(W ) = 0...

There are meagre sets W such that P(W ) = 1...

These examples can be very simple (open or closed) sets...



Similarities between meagre sets and negligible sets

M = {W ⊆ [0, 1] | W is meagre} ; N = {W ⊆ [0, 1] | P(W ) = 0}

Given F =M or N ,

1 for any A ∈ F , if B ⊂ A then B ∈ F ;

2 for any (An)n>1 ⊂ F ,
⋃

n>1 An ∈ F ;

3 each countable set in [0, 1] belongs to F ;

4 if A ∈ F , then Ac /∈ F ;

5 F contains no interval.

Theorem (Sierpinski, 1920)

Under the continuum hypothesis, there is a bijection f : R→ R such that
W ⊂ R is meagre if and only if f (W ) has Lebesgue measure zero.

But the concepts remains different !!!
[Oxtoby 1971] John C. Oxtoby, Measure and category. A survey of the analogies between topological and measure spaces.

Graduate Texts in Mathematics, Vol. 2. Springer-Verlag, New York-Berlin, 1971
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Why does it work for ω-regular sets?

Theorem [VV06]

Given a finite system M and an ω-regular property ϕ, we have that

M |≈P ϕ ⇔ M |≈T ϕ,

for bounded Borel measures.

The key ingredient to prove the above result is the following result:

Theorem [BGK03]

Given G = (G , v0,W ) where W is an ω-regular property, we have that

Pl. 0 has a winning strategy for G
iff

Pl. 0 has a positional winning strategies for G.

[BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of
Path Games. LPAR 2003: 229-243



If W is large and ω-regular, then P(W ) = 1
Sketch of proof

By [BGK03], Pl. 0 has a positional winning strategy f for W on M.
In particular, there is k ∈ N such that for all finite prefixes π: |f (π)| 6 k.

We now see M as a finite Markov chain with uniform distribution.
There is p > 0 such that for all finite paths π: P(π · f (π)|π) > p.

By means of Borel-Cantelli Lemma, we thus have that

P({ρ | ρ is a play consistent with f on infinitely many prefixes︸ ︷︷ ︸
ρ is consistent with f

}) = 1

As f is winning: {ρ | ρ is a play consistent with f } ⊆W , thus P (W ) = 1.
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If W is ω-regular and not large, then P(W ) < 1
Sketch of proof

Pl. 0 does not have a winning strategy in the BM game G = (V , v0,W ).
By determinacy, Pl. 1 has a winning strategy f1 in G (as W is ω-regular).

Let π1 be the first move of Pl. 1 given by f1. We have that P(π1) > 0.
Notice that f1 is a winning strategy for Pl. 0 in G ′ = (V , π1,W

c).

By the previous implication, we have that

P(W c | π1) = 1.

And thus

P(W ) < 1.
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Simple strategies for Banach-Mazur games
Given G = (G , v0,W ), let f be a strategy for Pl. 0.

f (ρ1ρ2 · · · ρ2n+1︸ ︷︷ ︸
What is observed

) = ρ2n+2︸ ︷︷ ︸
What is played

We say that f is

positional if it only depends on Last(ρ2n+1).

finite memory if it only depends on Last(ρ2n+1) and a finite memory.

b-bounded if |ρ2n+2| 6 b.

bounded if there is b > 1 such that f is b-bounded.

move-blind (decomposition invariant) if it does not depend of the
moves of the players, but only of the past seen as a single finite word.

move-counting if it only depends on Last(ρ2n+1) and the number of
moves already played.

length-counting if it only depends on the Last(ρ2n+1) and the length
of the prefix already played.

[GL12] E. Grädel, S. Leßenich, Banach-Mazur Games with Simple Winning Strategies, CSL 2012
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bounded if there is b > 1 such that f is b-bounded.

move-blind (decomposition invariant) if it does not depend of the
moves of the players, but only of the past seen as a single finite word.

move-counting if it only depends on Last(ρ2n+1) and the number of
moves already played.

length-counting if it only depends on the Last(ρ2n+1) and the length
of the prefix already played.

[GL12] E. Grädel, S. Leßenich, Banach-Mazur Games with Simple Winning Strategies, CSL 2012



About Simple strategies for Pl. 0 (1)

Theorem [BGK03]

Given G = (G , v0,W ) on a finite graph, we have that

Pl. 0 has a positional winning strategy for G
iff

Pl. 0 has a finite-memory winning strategies for G.

[BGK03] D. Berwanger, E. Grädel, S. Kreutzer: Once upon a Time in a West - Determinacy, Definability, and Complexity of

Path Games. LPAR 2003: 229-243

Theorem [G08]

Given G = (G , v0,W ) on a finite graph, we have that

Pl. 0 has a winning strategy for G
iff

Pl. 0 has a move-blind winning strategies for G.

[BGK03] E. Grdel, Banach-Mazur Games on Graphs. FSTTCS 2008: 364-382
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About Simple strategies for Pl. 0 (2)

Simple observation

Given G = (G , v0,W ) on a finite graph, we have that

If Pl. 0 has a positional winning strategy for G,
then

Pl. 0 has a bounded winning strategies for G.

Theorem [BM13,BHM15]

Given G = (G , v0,W ) on a finite graph, we have that

Pl. 0 has a length-counting winning strategy for G
iff

Pl. 0 has a winning strategies for G.

[BM13] T. Brihaye, Q. Menet: Fairly Correct Systems: Beyond omega-regularity. GandALF 2013: 21-34

[BHM15] T. Brihaye, A. Haddad, Q. Menet: Simple strategies for Banach-Mazur games and sets of probability 1, accepted in
Information and Computation.



Building a length-counting winning strategy
Sketch of proof

Let f be a winning strat., we have to build h : V × N→ V ∗.

Assume that {π1, π2, π3} is the set finite set of paths of length n ending
in v , then we define:

h(v , n) = f
(
π1

)
f
(
π2f (π1)

)
f
(
π3f (π1)f (π2f (π1))

)

·

v · · ·

v · · ·

v · · ·

π1

π2

π3

f (π1) f (π2f (π1)) f (π3f (π1)f (π2f (π1)))

f (π1) f (π2f (π1)) f (π3f (π1)f (π2f (π1)))

f (π1) f (π2f (π1)) f (π3f (π1)f (π2f (π1)))

If ρ is consistent with h, then ρ is consistent with f (which is winning).

 h is a length-counting winning strategy for Pl. 0.



Simple strategies for Pl. 0 on finite graphs

Winning positional strategy

Winning finite memory strategy

Winning bounded strategy Winning move-counting strategy

Winning length-counting strategy

Winning strategy

Winning move-blind strategy

Combining results from [BGK03], [VV06], [G08], [GL12], [BHM15].



Relations with the sets of probability one

Proposition

Let G = (G , v0,W ) be a Banach-Mazur game on a finite graph and P a
reasonable probability measure.

If Pl. 0 has

{
a move-counting

a bounded
winning strategy for G, then P(W ) = 1.

There exist large open set of probability 1 without a positional/ bounded/
move-counting winning strategy.

W = {(wk)k>1 ∈ {0, 1}ω | ∃n > 1 wn! = 1}

We look for a new concept of “simple strategy”
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Back to the example

0 1

1
2

1
2

1
2

1
2

W={(wk )k>1∈{0,1}ω | ∃n>1 wn!=1}

Clearly Pl. 0 has a winning strategy, thus W is large.

Moreover, we have that P(W ) = 1. Indeed, for n > 1:

An := {(wk)k>1 ∈ {0, 1}ω | wn! = 1 and wm! = 0 for any 1 < m < n},
we thus have:

W =
⋃̇

n>1
An and P(An) =

1

2n−1
 P(W ) = 1.



Back to the example

0 1

1
2

1
2

1
2

1
2

W={(wk )k>1∈{0,1}ω | ∃n>1 wn!=1}

Let f be a b-bounded strategy for Pl. 0.

A winning strategy for Pl. 1 (against f ) consists in

starting by playing (b + 1)! zeros,

at each step, completing the sequence by 0’s to reach the next k!

 there is no winning bounded (resp. positional) strategy for Pl. 0.



Back to the example

0 1

1
2

1
2

1
2

1
2

W={(wk )k>1∈{0,1}ω | ∃n>1 wn!=1}

Let f be a b-bounded strategy for Pl. 0.

A winning strategy for Pl. 1 (against f ) consists in

starting by playing (b + 1)! zeros,

at each step, completing the sequence by 0’s to reach the next k!

 there is no winning bounded (resp. positional) strategy for Pl. 0.

One can also prove the non existence of winning move-counting strategy



Banach-Mazur game
A play consists in concatenating finite paths,



Banach-Mazur game
A play consists in concatenating finite paths,
or equivalently in building a decreasing sequence of open sets.



Another simple strategy

Given G = (G , v0,W ), a strategy for Pl. 0 can be seen as f : O∗ → O.

f (O1O2 · · ·O2n+1︸ ︷︷ ︸
What is observed

) = O2n+2︸ ︷︷ ︸
What is played

,

where O1 ⊇ O2 ⊇ · · · ⊇ O2n+1 ⊇ O2n+2 are open sets.

Assuming that G is equipped with a probability distribution on edges.

The notion of α-strategy

Given 0 < α < 1, we say that f is an α-strategy if and only if

P (O2n+2|O2n+1) > α.
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Results on α-strategies

Theorem [BM13,BHM15]

Let G = (G , v0,W ) be a Banach-Mazur game on a finite graph and P a
reasonable probability measure.

If Pl. 0 has a winning α-strategy for some α > 0, then P(W ) = 1.

Theorem [BM13,BHM15]

When W is a countable intersection of open sets, the following
assertions are equivalent:

1 P(W ) = 1,

2 Pl. 0 has a winning α-strategy for some α > 0,

3 Pl. 0 has a winning α-strategy for all 0 < α < 1.

[BM13] T. Brihaye, Q. Menet: Fairly Correct Systems: Beyond omega-regularity. GandALF 2013: 21-34

[BHM15] T. Brihaye, A. Haddad, Q. Menet: Simple strategies for Banach-Mazur games and sets of probability 1, accepted in
Information and Computation.



Summary

Winning positional strategy

Winning finite memory strategy

Winning bounded strategy Winning move-counting strategy

Winning α-strategy Probability 1
Countable intersection

of open sets

Winning length-counting strategy

Winning strategy

Winning move-blind strategy



Abour fair model-checking of timed automata (1)

Theorem [BBB+14]

Given a timed automaton A and an ω-regular property ϕ, we have that

A |≈P ϕ ⇔ A |≈T ϕ,

in the following cases:

if ϕ is a safety property.

if A is a one-clock timed automaton.

if A is a reactive timed automaton.

[BBB+14] Nathalie Bertrand, Patricia Bouyer, Thomas Brihaye, Quentin Menet, Christel Baier, Marcus Groesser, Marcin

Jurdzinski: Stochastic Timed Automata. Logical Methods in Computer Science 10(4) (2014)



Abour fair model-checking of timed automata (2)

The previous theorem is false in general:

`0 `1 `2

y<1

`3`4

y<1

e1 ; y<1 e2 ; y=1

y :=0

e0 ; x>1

x :=0

e3 ; 1<y<2e4 ; y=2

y :=0

e5 ; x>2

x :=0

Let ϕ be the formula GF `2, we have that

A |≈T ϕ but A 6|≈P ϕ.

Let yn be the value of y at the nth arrival in `0

yn < 1 and yn < yn+1



Conclusion

Why should you fall in love with Banach-Mazur games?

They are fun!

They enjoy nice properties (positional strategies suffice for ω-regular
winning conditions).

They help understanding topological concepts.

The study of their winning strategy helps in understanding links
between topological bigness and probabilistic bigness.

...

Thank you!!!
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